

The Basics of AngularJS

JavaScript is an important language for web developers—one that is nearly impossible to ignore. It’s a

language that was created for the relatively simple purpose of adding basic interactivity to web pages.

However, it has risen to mainstream importance, and it is used today to build large and sophisticated web

applications.

Why We Need Frameworks

You may develop some appreciation of why frameworks such as AngularJS exist, by considering that

JavaScript was not originally created with today’s much more complex requirements in mind. In fact, in

many respects, JavaScript was adapted to this purpose because it was there. It was already widely supported

in web browsers, and many developers knew how to use it.
JavaScript sometimes gets a bad rap; it isn’t everyone’s favorite language. I personally enjoy using it and

find that I can work around the things that I perceive as shortcomings; nevertheless, I totally understand why

some developers don’t feel the same way as I do, particularly those who have not had the chance to warm up to

its strengths. I think it is fair to say that JavaScript has many great features, but it is equally fair to say that it is

missing a few features—ones that developers feel are vital.
Given its humble beginnings and perceived shortcomings, is JavaScript really ideal for developing

modern web applications? It certainly is. As a relatively easy-to-learn language with almost ubiquitous

support, it is extremely well suited to the task.
Here’s a better question: Is JavaScript ideal for developing applications that require modularity, testability,

and developer productivity? The short and simple answer to a question such as this is no, not really. At least not

―out of the box.‖ The makers of JavaScript simply didn’t have these requirements in mind when it was

conceived. However, today we have a proliferation of frameworks and libraries designed to help us with such

things. The general idea is that we want to be more productive and that we want to write code, often in response

to unreasonably tight deadlines, that we can easily maintain and reuse. This is why we need frameworks.
Each framework achieves its (sometimes significantly different) objectives in a variety of ways and to

varying degrees. For example, the popular jQuery framework addresses direct Document Object Model

(DOM) manipulation extremely well, but it doesn’t really help out much when it comes to keeping your code

structured and organized.
To be fair, jQuery is more of a library than a full-fledged framework, so this really relates more to my

point about varying objectives and degrees.
With regard to front-end web development, AngularJS addresses many, if not all, of the issues

developers face when using JavaScript on its own, and it does so in a very elegant and comprehensive way.
There often isn’t a right or wrong framework, by the way, because much of what constitutes right may

depend on the kind of project on which you are working, your current skills and experience, and your personal

preferences. That being said, I personally believe that AngularJS is a great all-around framework, which is

definitely among the best available.

What Is a Framework?

Before exploring AngularJS in depth, let us consider exactly what AngularJS is. What do we mean by a

―framework,‖ and why would we want to use one? Might it be a good idea not to use one? Might it even be a

good idea to develop our own instead?
The dictionary definition tells us that a framework is ―an essential supporting structure.‖ That sums up

AngularJS very nicely, although AngularJS is much more than that. AngularJS is a large and helpful

community, an ecosystem in which you can find new tools and utilities, an ingenious way of solving common

problems, and, for many, a new and refreshing way of thinking about application structure and design.
We could, if we wanted to make life harder for ourselves, write our own framework. Realistically,

however, for most of us, this just isn’t viable. It almost goes without saying that you need the support of some

kind of framework, and that this framework almost certainly should be something other than your own

undocumented (or less than well understood) ideas and thoughts on how things should be done. A good

framework, such as AngularJS, is already well tested and well understood by others. Keep in mind that one day

others may inherit your code, be on your team, or otherwise need to benefit from the structure and support a

framework provides.
The use of frameworks isn’t uncommon; many programmers from all walks of life rely on them.

Business application developers use frameworks, such as the Microsoft Entity Framework, to ease their

pain and speed up development when building database-related applications. For example, Java

programmers use the LibGDX framework to help them create games. (We all need a little help.)

Downloading and Installing AngularJS

Downloading and installing AngularJS is easy, takes very little time, and doesn’t require your credit
card. It is completely free of charge (under the MIT license).

To download AngularJS, head on over to http://angularjs.org and follow these steps:

1. Create a folder on your computer called BeginningAngularJS. Inside this folder,
create a subfolder called js to contain your JavaScript files.

2. On the AngularJS home page, click the Download button. You will see a dialog box

like the one shown in Figure 2-1.

Figure 2-1. The AngularJS download options dialog

3. You want the 1.2.x-minified version, so make sure that you choose 1.2.X (legacy)
for the branch option and Minified for the build option.

4. Click the Download button to start the download process.

5. Once the download has completed, move the downloaded file, angular.min.js, into

the js folder that you created earlier (assuming you did not save it there directly).

6. That’s it! You just downloaded and installed AngularJS.

Throughout this book, I will assume that you have followed the preceding steps when I refer to file system

locations and folder names. If you are comfortable with the Content Delivery Network (CDN), and prefer to

use it, feel free to do so. Likewise, if your preference is to use the non-minified version of the AngularJS

library, go right ahead. This won’t affect the output of any of the code listings (assuming that you have things

set up correctly otherwise).

Browser Support

All modern web browsers support AngularJS. This list includes Safari, Chrome, Firefox, Opera, IE9 and later

versions, and mobile browsers, including Android, Chrome Mobile, and iOS Safari. Generally speaking,
browser support is not an issue; AngularJS is very much here and now.

■ Note The ninth and later versions of Internet Explorer are supported. At the time I write this, support for

Internet Explorer 8 is about to be dropped.

Your First AngularJS Application

Let’s start our journey toward AngularJS enlightenment by creating a very small and simple application, albeit
one that demonstrates little more than how to include AngularJS on a web page, and use it to display the

traditional Hello World greeting.
Save Listing 2-1 into your BeginningAngularJS folder.

Listing 2-1. Hello World

<!DOCTYPE html>
<html ng-app>
<head>

<title>Listing 2-1</title>
<script src="js/angular.min.js"></script>

</head>
<body>

<p>Hello {{'Wor' + 'ld'}}</p>
</body>
</html>

While this is about as simple as it gets, there is actually quite a lot going on here. It’s well worth dissecting
this and reviewing how each line works, as there are a few important concepts at play—concepts that are

fundamental to the way AngularJS works and, therefore, key to how to think in AngularJS.
In the first line of the program, we have the HTML5 doctype. Though this is not strictly necessary for

AngularJS to work, it is the doctype you should be using for today’s rich Internet applications.
The second line is where it becomes interesting. We have declared an ngApp directive within the opening

HTML element. I will expand on this directive (and directives in general) a little bit later in this chapter and

then much more in Chapter 5. We use ngApp to let AngularJS know which element is to be considered the root

of the application. As we have declared it within the HTML element, we are declaring that the whole

document is to be ―under the control‖ of AngularJS. Moving down to the fifth line, you can see that we have

included the AngularJS library using the script element. If we didn’t include the AngularJS library, we

wouldn’t see any AngularJS goodness. Now for something very exciting: if you move down to the eighth line,

you will see an AngularJS expression, as delimited by the opening and closing double curly braces—{{ and }}.

We keep things nice and simple here and concatenate the two string literals 'Wor' and 'ld'. AngularJS

expressions are powerful, and you will see many of them in this book. Here we use one in a somewhat

contrived way, simply to illustrate how they are put into action. The interpolated value is, of course, the string

World. When we place an expression between double curly braces like this, we create an expression binding.

In a nutshell, this means that the value of the expression is bound. Anytime it changes, the binding will update

too. Bindings and expressions will be second nature to you in no time, as these are at the core of how

AngularJS works. You can see the result of this in Figure 2-2.

Figure 2-2. The output of our Hello World listing

I said it was very exciting, didn’t I? Well, perhaps I exaggerated a little bit. Nonetheless, it is an
AngularJS application, and it gets you started on your journey. We will do something a little more

interesting shortly, but let’s summarize the key steps we took in Listing 2-1.

 We used the ngApp directive to inform our page that it should consider itself under the
control of AngularJS.

 We then used a script element to include the AngularJS library.

 Just to prove everything was hooked up correctly, we used a simple AngularJS
expression binding to do some basic string concatenation.

That wasn’t difficult at all, but let’s tinker with Listing 2-1 a bit, just to get a little bit more insight

into how AngularJS ticks. Listing 2-2 is a revised version.

Listing 2-2. Tinkering with the Hello World Listing

<!DOCTYPE html>
<html>
<head>

<title>Listing 2-2</title>
<script src="js/angular.min.js"></script>

</head>
<body>

<p ng-app>Hello {{'Wor' + 'ld'}}</p>
<p>Hello {{'Wor' + 'ld'}}</p>

</body>
</html>

All that we have done here is to move the ngApp directive out of the opening HTML element and place it

on the first paragraph element. We also added another paragraph element, which is almost identical to the first.

However this one is without an ngApp directive. Save Listing 2-2, and load it up in your browser.
Two interesting things happen:

1. The first interesting thing is that the expression binding in the first paragraph

worked just as it did before. Even though we relocated the ngApp directive, the

expression binding is still nested within its boundaries and, therefore, still under

AngularJS control.

2. The second interesting thing is that the second paragraph uses an expression too.

However, this expression binding simply renders as is; it is not evaluated at all.

AngularJS simply isn’t interested in it, because it is not contained within the

boundaries of an ngApp directive. In fact, AngularJS has no knowledge of this

particular paragraph element or anything contained within it.

In this book, I will always declare the ngApp directive on the HTML element. While it is handy to know

that you can tell AngularJS to manage only a specific portion of the DOM, I want you to see the effect of it

being in the wrong location, or missing altogether. Forgetting to add the ngApp directive is one of the most

common mistakes that beginners make.

This sets us up nicely with some working AngularJS code, but it doesn’t really hint much at what makes
AngularJS such a powerful framework. Listing 2-3, while still small and simple, starts edging toward this.

Listing 2-3. Live Updates

<!DOCTYPE html>
<html ng-app>

<head>
<title>Listing 2-3</title>

<script src="js/angular.min.js"></script>
</head>

<body>

<label>City: </label><input ng-model="city" type="text" /></label>
<p>You entered: {{city}}</p>

</body>
</html>

Here we have declared the expected ngApp directive and AngularJS script reference with which, it is

hoped, you are already comfortable. The two important lines are the two lines contained within the body

element. The first declares a standard HTML text input, but with one very important addition—the ngModel

directive, which we have assigned the value of city. The second line, via an expression binding, uses this

value to reference the text that the end user enters into the text field.
Save Listing 2-3 and load it up in your browser. This is where the magic starts to happen. Start typing into

the text field and watch as the text in the paragraph below the text field updates in real time. What makes it so

magical is the amount of code that it took to achieve this result—not very much code at all, no?
It’s not really magic, of course. At least not in the Harry Potter sense. However, something very

sophisticated is clearly taking place. Already, we can see that AngularJS must be hard at work for us,

monitoring the application for data changes, updating the DOM to show these changes to the end user, and

other things that we are yet to encounter. Other frameworks require that you tackle some or all of this work

yourself. AngularJS wants you to focus on your primary concern—your application, not its plumbing.
Another interesting point is that we didn’t actually write any JavaScript code! You will find that

AngularJS has a strong lean toward a declarative, as opposed to a procedural, coding style. Obviously, you

have to write JavaScript at some point or other, but AngularJS encourages you to put this in the right parts of

your application. As you might expect, a good portion of this book will look at just what constitutes these

―right parts.‖

Declarative vs. Procedural Programming

A classic example of a declarative programming language to which many developers can easily relate is SQL.

When you write an SQL query against a database such as MySQL, you don’t really do the heavy lifting

yourself. Instead, you give rather high-level instructions to the database engine via a relatively simple select

statement. You don’t worry about how the database engine should pull the data together in the most efficient

way, and you don’t worry about things such as control flow and looping constructs—you just issue a select

statement and expect the database to give you back the data that you want. In a sense, you declare what you

want, and it does the work for you.

Procedural programming, on the other hand, requires a more detailed and lower-level set of instructions. In

the extremely procedural C language, for example, you must take great care to reserve memory, detail the

specific instructions you want to be executed, and then worry about freeing up memory, making sure your

algorithms perform well and are thoroughly tested, and all sorts of other things.
Declarative programming is much more convenient than procedural programming, because it is often

faster and easier. You generally don’t have the same kind of granular control that you do with procedural

programming, but you often don’t need it. In fact, as you will see, AngularJS won’t mind at all if you want to

adopt a procedural approach when it suits you.

Directives and Expressions

Let’s have a look at a few more AngularJS directives. Directives are a great example of the declarative

programming style that AngularJS encourages you to adopt. They are also at the heart of AngularJS, and

they are a crucial part of how you will deliver a great user experience.

What Is a Directive?

AngularJS uses directives to augment HTML with extra functionality. Essentially, directives are a
convenient way to declaratively call JavaScript functions. We will look at directives in much more detail in
Chapter 5. For now, though, following is a decent overview of directives.

Let’s try out the very handy ngShow directive. Check out Listing 2-4.

Listing 2-4. A First Look at ngShow

<!DOCTYPE html>
<html ng-app>
<head>

<title>Listing 2-4</title>
<script src="js/angular.min.js"></script>
</head>
<body>

<p ng-show="true">Paragraph 1, can you see me?</p>

<p ng-show="false">Paragraph 2, can you see me?</p>

<p ng-show="1 == 1">Paragraph 3, can you see

me?</p> <p ng-show="1 == 2">Paragraph 4, can you

see me?</p>

</body>
</html>

Listing 2-4 shows four paragraph elements, each has been ―augmented‖ by an AngularJS directive that

goes by the name of ngShow.

■ Note The astute reader may have noticed that I have used the term ngShow in my writing and the subtly

different term ng-show in my code. Which is correct? AngularJS typically refers to directives in

documentation by their case-sensitive, CamelCase name (for example, ngShow) but refers to directives in

the DOM by using lowercase, dash-delimited attributes (for example, ng-show).

What does ngShow do? Much of the answer is in the name. The ngShow directive will show, or hide, the

element on which it is declared, based on the expression provided to it. Load up Listing 2-4 in your browser,

and you will see that only the first and third paragraphs appear (as confirmed in Figure 2-3). They only appear

because, in both cases, their respective expressions evaluate to the Boolean value of true. The second and fourth

paragraphs, however, do not appear because their respective ngShow expressions evaluate to the Boolean value

of false.

Figure 2-3. ngShow in action

The ngShow directive is very handy. You will use it often for hiding or showing regions of your user
interface, based on user input or other conditions.

Another common directive is the ngClick directive. Just like ngShow, ngClick expects an expression,
but unlike ngShow, this expression is only evaluated when the element it is declared upon is clicked.

Listing 2-5 shows ngClick in action. Load it up in your browser and press the Increment button a few

times.

Listing 2-5. Demonstrating ngClick

<!doctype html>
<html ng-app>
<head>

<title>Listing 2-5</title>
<script src="js/angular.min.js"></script>

</head>
<body>

<button ng-click="count = count + 1" ng-init="count = 0">

Increment
</button>
count: {{count}}

</body>
</html>

As you might have guessed, clicking the Increment button causes the value of count to increment. Each
time the button is clicked, ngClick evaluates the expression. As the count variable is used in an expression
binding, we can see its value updated in real time.

Here we have also used the ngInit directive. You typically won’t use ngInit very much, if at all, for

reasons that will make more sense when I discuss the MVC (Model View Controller) approach predominantly

used in AngularJS applications. However, here we use it to initialize the count variable to 0. You could just as

easily have set this value to, say, 10, in order to increment from a starting value of 10 instead of 0.

What Are Expressions?

You’ve seen a few expressions already, but what exactly are they? Essentially, they are JavaScript
expressions, just like the ones you already know and love. However, there are a few important differences.

 In AngularJS, expressions are not evaluated against the global window object; instead,
they are evaluated against a scope object.

 You don’t get the usual ReferenceError or TypeError when trying to evaluate
undefined properties. AngularJS expressions are forgiving in that regard.

 You cannot use conditionals, loops, or exceptions. This is a good thing; you don’t
want complex logic inside expressions. (In Chapter 3, I will discuss where you do
want them.)

 You can use AngularJS filters to format data before displaying it. (I cover Filters in Chapter 4.)

To get a sense of how expressions work and what you can do with them, take a look at Listing 2-6.

Listing 2-6. A Quick Look at AngularJS Expressions

<!DOCTYPE html>
<html ng-app>
<head>
<title>Listing 2-5</title>

<script src="js/angular.min.js"></script>
</head>
<body>

<h1>Expression Samples</h1>

<!-- Basic arithmetic -->
<p>6 + 4 = {{6 + 4}}</p>

<!-- Using a JavaScript string method -->
<p>{{"Beginning AngularJS".toUpperCase()}}</p>

<!-- Searching for an occurence of 'D' -->
<p>{{"ABCDEFG".indexOf('D')}}</p>

<!-- Ternary operation -->
<p>{{1==1 ? "Red" : "Blue"}}</p>

</body>
</html>

There is nothing complex going on here. It’s all run-of-the-mill JavaScript code but now using

AngularJS expressions. Figure 2-4 shows the results.

Figure 2-4. AngularJS expressions in action

There are definitely a few more things to know about expressions, and we will get to them as you learn

more about how we should be structuring and organizing our code. This is exactly what I will discuss in the

next chapter.

CHAPTER 2

Introduction to MVC

We have taken a quick look at AngularJS and how to get a simple Angular-based web page up and running,
but the reality is that you don’t need AngularJS if all you want to do is build a very basic application.

One of the major strengths of AngularJS lies in its ability to help you properly organize and structure your

applications, and very small applications tend not to benefit much at all from this. Of course, smaller

applications should be properly structured too, but such applications are not as likely to require the rigid

underpinnings and formal structure of a medium- or large-sized application. The way you would approach

pitching a tent is not the same way you would approach building a log cabin. With that in mind, in this chapter,

we will look at what it means to organize and structure an application and how the Model View Controller

(MVC) pattern can help you to do both.

Design Patterns

Before we get into MVC, let’s talk about design patterns for a moment. After all, MVC is a design pattern, so

it would be good to know what design patterns are and why you should care about them. Essentially, a design

pattern is a documented solution to a recurring problem that programmers have identified—usually in a

particular context. Design patterns won’t give you the code you need to solve a given problem, but they will

propose a well-thought-out and generally accepted approach that you might want to consider adopting

yourself.
A good way to think of design patterns is that they are like recipes that have been created by

programmers who have spent a lot of time in the trenches. These programmers have found out, often through

a combination of talent and old-fashioned trial and error, a lot of really great ways to solve specific kinds of

problems. Furthermore, these programmers have decided to share these recipes with everyone else.
There isn’t really a formal standard that states how design pattern documentation should be written, but we

will examine something fairly typical. You will generally find something along the lines of what I have outlined
in Table 3-1 on design pattern documentation.

Table 3-1. Typical Design Pattern Documentation

Title Description

Pattern Name and A name that helps in referring to the pattern, often

Classification with a classification stating the type of pattern it is

Intent The goal of the pattern and the reason it exists

Motivation A scenario consisting of a problem and a context in

 which this pattern can be used

Collaboration A description of how classes and objects used in the

 pattern interact

Sample Code Actual code showing how the pattern can be used in a

 programming language

Sometimes, you will find a lot more information about a design pattern than what I present here, but
usually you will find at least this much to help you understand its purpose and its intended uses.

■ Tip There is a school of thought that says that MVC is not a design pattern at all, rather it’s an an

architectural pattern. There is no right or wrong answer, in my opinion, and the important word here is

pattern.

After reading through any given design pattern documentation and looking at any associated diagrams

(which are usually UML based; see the Tip here), you are typically in a much better position to determine if it is

applicable to the particular problem you are trying to solve. Patterns certainly are a tremendously useful

resource, but there is one really important thing to understand about them up front: they are not silver bullets.

Think of them more like friends that give good advice and not so much like divine intervention when you can’t

find an answer.

■ Tip The Unified Modeling Language (UML) is a general-purpose modeling language used in software

development. It provides a standard way to visualize the design of software systems.

Table 3-2. Singleton Design Pattern Documentation

Title Description

Pattern Name and Classification Singleton: an object creational pattern

Intent Ensures that a class has only one instance and provides a global point

 of access to it

Motivation Sometimes it makes sense to control the creation of certain objects.

 For example, rather than allow an application to create numerous

 database connection objects, it may make more sense to allow for a

 single connection object, which an application can access through a

 gateway object, that provides access to a single instance.

Collaboration The Singleton collaborates with external objects.

Implementation Creates a class that can create a single instance of itself. This should be

 the only way an instance can be created.

Sample Code Sample code is shown in Listing 3-1.

Let’s work through a scenario. Assume that we found this design pattern documentation through an

online search after recognizing an issue within our application. Far too many objects of the same type were

being created. Let’s further assume that these objects were quite expensive to create, with each object’s

initialization causing time-consuming and bandwidth-intensive connections to a remote system. We need to

fix this.

■ Note One of the first and most well received books on design patterns is Design Patterns: Elements of

Reusable Object-Oriented Software by Erich Gamma et al. (Addison-Wesley Professional, 2015). It’s well

worth checking this book out, if you want to learn more about design patterns and how to use them.

So, we have read through the patterns documentation, and we want to figure out if and how this particular

pattern can be of any use. The Motivation section of Table 3-2 has got our attention—it certainly seems to fit

the bill. It’s definitely worth further study to see if the code sample that came with it can shed any light on how

we could put it into practice.
Let’s look at the sample code in Listing 3-1. Don’t worry too much if you don’t fully grasp what each

and every line is doing, as this listing uses some advanced JavaScript techniques that you may not be

familiar with yet. Nonetheless, do pay special attention to the comments.

Listing 3-1. A JavaScript Implementation of the Singleton Pattern

var Logger = (function() {

// private variable to hold the only
// instance of Logger that will exist var

loggerInstance;

// Create the logger instance
var createLogger = function() {

var _logWarning = function(message) {
// some complex work coud go here, but
// let's just fake it

return message.toUpperCase();
};

return {
logWarning: _logWarning

};

};

return {

// Here is the crucial part. First we check
// to see if an instance already exists. If
// it does, we return it. If it does not, we
// create it.

getInstance: function() {
if (!loggerInstance) {

loggerInstance = createLogger();
}
return loggerInstance;

}

};
})();

// Notice how we use getInstance() and we

// do not use direct object creation with the
// new keyword

var myLogger = Logger.getInstance();

myLogger.logWarning("Memory use nearing

maximum!");

This code sample represents a typical code snippet that you might find accompanying design pattern

documentation. It just so happens to be written in JavaScript, but it could just as easily have been written in
C#, Java, or any other language. (In fact, that is more likely to be the case.)

The essential aspect of Listing 3-1 is that it privately manages a single instance of a logger object. It isn’t

possible to create a new logger object directly. We have to use the getInstance function to access the already-

existing logger object (or, if it didn’t exist already, the newly created logger object). This is the essence of the

pattern, and it seems to be a good solution for the problem we face in our own scenario: our applications issue

of numerous objects of the same type being needlessly created, over and over.
Along with a code sample such as this, you are likely to come across a UML diagram showing how objects

used in a pattern relate and interact with one another. I will stop short of getting into the nuances of UML, and

in the case of the Singleton pattern, by definition, there aren’t that many relations and interactions to show.
The usefulness of design patterns can be difficult to overstate. In our scenario, we had a serious problem

within our application, and the Singleton design pattern turned out to be a good way to solve it. This is a

relatively simple example of using design patterns to find solutions about which we can feel confident. Other

programmers have used this approach, and it is one that has come about through collaboration, testing,

refinement, and lots of real-world use. That has to be a good thing.

Design patterns are indeed a valuable resource, but you still have to put plenty of thought into how (and

whether or not) to use any given design pattern in a particular context. As specific as design patterns may seem

in their description and usage, they are still generalized solutions that may or may not apply to your needs. That

being said, a well-documented design pattern will help you make these decisions.

■ Tip Reading up on design patterns is actually a great way to improve your code. You may have solved a

problem in a particular way, only to find that there is a design pattern dedicated to avoiding the approach you

took! It might not be good for the ego, but it’s a great way to learn.

With this short introduction to design patterns now complete, we can look at the specific pattern that we

will use throughout the rest of this book: the Model View Controller (MVC) pattern. You have to learn what

MVC is, so that you can apply it within AngularJS. However, we don’t actually have to write our own MVC

solution, because AngularJS has what you need baked right into the framework.

Model View Controller

hope our quick discussion about design patterns has brought to the front of your mind that there are good ways

and not so good ways to design your applications and that there are helpful recipes out there that can help you

design better applications. Fortunately, the folks who created AngularJS have already put all of the pieces of

the MVC pattern into place for you. As the MVC pattern is an architectural pattern, which is realized through a

number of other design patterns, I won’t include the rather extensive documentation for it here. Instead, we

will focus on the AngularJS implementation of it and consider what it does for us.
Let’s talk about the three major parts of the MVC pattern: the model, the view, and the controller. We’re

not really speaking at a code level here; rather, we are talking at a higher level about how to organize and

structure your applications. MVC is often considered an architectural pattern, which is essentially a pattern

that addresses some aspect of an application’s overall organization and structure.
We will see how MVC comes together in code form later in this chapter, so don’t worry too much if it all

seems a little abstract as I am discussing it.

■ Tip Architectural patterns are often realized through a number of design patterns. As I said earlier,

however, the keyword here is pattern. It really depends on what level you happen to be speaking (and quite

possibly to whom you happen to be talking).

Model

The model represents the underlying, logical structure of data in a software application. It’s a common
mistake to think of the model as the database behind your application, and it is much better to view the
model as the body of code that represents the data.

View

A view is the body of code that represents the user interface (all of the things that the user can see and to
which the user can respond on the screen, such as buttons, dialog boxes, and so on). An application
generally has multiple views, and each view often represents some portion of your model.

Controller

You can think of the controller as the intermediary for the view and the model. Examine Figure 3-1. You can
see that the lines of communication correspond to this idea.

Figure 3-1. The MVC lines of communication

A Separation of Concerns

Great! We have some background on the three core components of MVC and how they relate to one another.

Though, at this stage, it may not be entirely clear why we should be using it. Now let’s take a look at the

underlying purpose of this pattern and what sort of problems it solves.
As is clear from the definitions above, the controller is actually keeping the model and the view

separated—one has no direct knowledge of the other. This is a fairly common design in software engineering,
and the term used to describe it is decoupling.

When you organize your applications in this manner, it promotes a principle known as Separation of

Concerns. Software that has been built around this principle tends to have distinct parts, each of which looks

after a particular concern. MVC is a great way of achieving this Separation of Concerns, and before I end this

chapter, we will take a quick first look at how AngularJS helps you build your applications in this manner.

MVC the AngularJS Way

Let’s put the theory into practice—at least just a little bit, as this section will not be much more than a drive-by
look at the topics that I will cover in much more detail throughout the rest of this book.

AngularJS makes the creation of MVC-style applications relatively straightforward and, in my opinion,

quite enjoyable. I will point out at this stage, however, that there are a few more moving parts than you may be
used to, and a couple of new concepts that you will need to wrap your head around.

Let’s kick things off by looking at how the model, view, and controller manifest themselves in actual code,

via a very simple code example. I will use a partial code listing to represent each concern, and then I will pull it

all together into a complete code listing. This way, we can isolate the important parts first and then look at

them working together as a whole. The code shown in Listing 3-1 is what we will use to represent our model.

var employees = ['Christopher Grant', 'Monica Grant', 'Christopher Grant', 'Jennifer Grant'];

The employees variable is simply a hard-coded array of employee names. In the real world, this array

would usually be populated from a data store of some kind–an SQL database, for example. We don’t need to

complicate the listing with data-access code. (I will, however, discuss AngularJS support for accessing data

later in the book.) The important thing to understand about this line of code is that the array of employees is

what represents our model.

It’s worth making a clarification here, as there is often confusion around the term model. Is the model all

of the objects that represent the entities in our data store, or is it just the one specific piece of information

that we use in a view (employees being an example of the latter)? The short and simple answer is that it

depends on the context, although it is quite common to refer to the former as the domain model and the latter

as the view model.
Let’s turn our attention to the view. Here is a very simple example of what an AngularJS view

looks like. In AngularJS parlance, we would call this a view template. As was discussed earlier, the
view is concerned with presentation. More often than not, it represents the presentation of data from our
model.

Number of Employees: {{ ourEmployees.length}}</h2>

This is basically just HTML and an AngularJS expression, and I will cover what’s happening here in a

moment. Right now, however, I want you to notice something interesting about Listing 3-2 and Listing 3-3.

Neither has any dependency on the other. This is good, and it is in line with our discussions around the desire

to achieve a Separation of Concerns. Though it does raise a very interesting question: How does the model

data, that is, the employees array, find its way into the view? Let’s investigate this right now.
Listing 3-2 is where the really interesting stuff starts to happen, as the AngularJS MVC framework is

starting to emerge. The function MyFirstCtrl is the controller. It is a common convention in AngularJS to use

Pascal case when naming the controller function (that is, to start with a capital letter and use a capital letter for

each new word).

Listing 3-2. MVC in Action

function MyFirstCtrl($scope) {

// populate the employees variable with some model data
var employees = ['Christopher Grant', 'Monica Grant', 'Christopher Grant', 'Jennifer

Grant'];

// Now put this model data into the scope so it can be used in the view

$scope.ourEmployees = employees;
}

Review Listing 3-2. We assign the model data to the ourEmployees property that we set on this $scope

object. This is the answer: this is how the model data, the employees array, finds its way into the view. The

$scope object was supplied to our controller function by the AngularJS framework, and all that we needed to do

was to populate it with the data that we wanted to make available to the view.
Glance back at the view in Listing 3-2, and notice that the expression uses a reference to ourEmployees.

You can think of this expression {{ourEmployees.length}} as effectively being the same thing as

{{$scope.ourEmployees. length}}. Don’t actually use a scope reference in this manner within an expression; it

won’t work, as the use of the current scope object is implicit.
Listing 3-3 pulls all of this together into a single MVC example. It’s short and simple, but the essence of

AngularJS is on display here.

Listing 3-3. A Complete MVC Example

<!DOCTYPE html>
<html ng-app>

<head>
<script src="js/angular.min.js"></script>
<script>

function MyFirstCtrl($scope) {

var employees = ['Catherine Grant', 'Monica Grant',

'Christopher Grant', 'Jennifer Grant'
];

$scope.ourEmployees = employees;
}

</script>
</head>

<body ng-controller='MyFirstCtrl'>

<h2>Number of Employees: {{ ourEmployees.length}}</h2>

</body>
</html>The output, as shown in Figure 3-2, is simply a count of the number of employees, courtesy of the

Array.length property.

Figure 3-2. Counting the number of employees (output of Listing 3-3)

Perhaps the most important aspect of Listing 3-3 is how we use a scope object, an instance of which, as we

discussed, was passed into our controller function by the framework. It really is quite fundamental to how

AngularJS does much of its work. We can already see it being used to decouple the model from the view, but it

actually does something a little bit more impressive than keep our code clean and modular. It is also a key

player in the framework’s ability to keep the model and the view in sync with each other. The changes made to

the model were immediately reflected in the view; we did not have to do any Document Object Model (DOM)

manipulation.

We are nearly at the end of this chapter, but before moving on, I want to show you one more code sample.
Listing 3-4 demonstrates another AngularJS approach toward code organization, to keep things clean and crisp.

Listing 3-4. Displaying the Employee Names

<!DOCTYPE html>
<html ng-app>

<head>
<script src="js/angular.min.js"></script>
<script>

function MyFirstCtrl($scope) {

var employees = ['Catherine Grant', 'Monica Grant',

'Christopher Grant', 'Jennifer Grant'
];

$scope.ourEmployees = employees;
}

</script>
</head>

<body ng-controller='MyFirstCtrl'>

<h2>Number of Employees: {{ ourEmployees.length}}</h2>

<p ng-repeat="employee in

ourEmployees">{{employee}}</p>

</body>
</html>

This listing isn’t terribly different from Listing 3-3—there is just one additional line of code. Instead of

displaying only the number of employees who work for us, we now use the ngRepeat directive to display the
name of each employee who works for us.

The ngRepeat directive will repeat the instance of the element upon which it is declared (a paragraph

element in this case) for each item in a collection. As Figure 3-3 shows, this results in a total of four paragraphs:

one for each of the employees in the ourEmployees array. Consider this a teaser. ngRepeat is quite powerful,

and you will definitely be seeing more of it in coming chapters.

Figure 3-3. Introducing ngDirective

CHAPTER 3

Filters and Modules

When working with data that has been retrieved from a database, you will spend a lot of time working with

raw unformatted data. It’s not at all uncommon to come across dates that are formatted unusually, numbers

that have far too many digits after the decimal point, and people’s names that are in all uppercase letters. Keep

in mind that data is not always stored in the best format for our own applications, and its original purpose

might have been to service a totally different kind of application. When presenting data to end users, however,

we need a way to deal with such things. Angular JS filters are often a very good way to do just that.
In this chapter, we will look at AngularJS filters, both the built-in variety and custom filters. We will

also look at AngularJS modules, which are important in their own right and are a prerequisite for creating
custom filters.

Introduction to Filters

AngularJS filters format the value of an expression for display to the end user. They don’t actually
change the underlying data, but they do change how it is displayed in the particular case in which the
filter is applied.

This is much easier to understand with the help of an example. First, let’s start off with some
sample data (see Listing 4-1) to which we can apply some filters.

Listing 4-1. Raw Sample Data

<script>

function MyFilterDemoCtrl($scope) {

var someData = {
firstName: 'JENNA',
surname: 'GRANT',
dateJoined: new Date(2010, 2, 23),
consumption: 123.659855,
plan: 'super-basic-plan'

};

$scope.data = someData;

}
</script>

Data like this would typically come back from a request to a web service or a database, but we only want

some sample data, so that we can learn about AngularJS filters without the additional distraction of data

access code. This fictitious data, captured in a JavaScript object we have named someData in Listing 4-1,

represents some customer details. We will use this data as the chapter progresses, starting now with a first

look at the AngularJS filter syntax.

The first filter we will look at will address the issue of the firstName and surname appearing in

uppercase. To improve this slightly, we will change it to lowercase. To achieve this, the main thing to know

is that you use the | (pipe) character, to invoke a filter. Later in this chapter, we will look at how to improve

upon this even further, by leaving the first character in uppercase and converting only the remaining

characters to lowercase, a technique known as title casing.
Listing 4-2 shows how this is done. The MyFilterDemoCtrl controller’s only task here is to make the data

available to the view. As you will recall from the last chapter, placing it in the scope does this.

Listing 4-2. Angular Filter Example

<!DOCTYPE html>
<html>
<head>

<title>Listing 4-2</title>
<script src="js/angular.min.js"></script>
<script>

function MyFilterDemoCtrl($scope) {

var someData = {
firstName: 'JENNA',
surname: 'GRANT',
dateJoined: new Date(2010, 2, 23),
consumption: 123.659855,
plan: 'super-basic-plan'

};

$scope.data = someData;

}
</script>

</head>

<body ng-app ng-controller="MyFilterDemoCtrl">

<p>
<!-- Unfiltered data -->
First Name: {{data.firstName}}

Surname: {{data.surname}}
</p>

<p>
<!-- Filtered data -->
First Name: {{data.firstName | lowercase}}

Surname: {{data.surname | lowercase }}
</p>

</body>
</html>

Listing 4-2 shows how easy it is to apply the lowercase filter. We apply it by stating the value we want to

filter, followed by the | (pipe) character and then the name of the filter. The most important aspects of the code

are shown in bold. As Figure 4-1 shows, the first paragraph displays the plain unfiltered data, and the second

paragraph displays the filtered data.

Figure 4-1. lowercase filter—before and after

You won’t be very surprised to learn that there is a built-in filter named uppercase, which, unsurprisingly,

converts characters to uppercase. AngularJS ships with a set of other handy filters, and we look at these in the

next section. However, before we get to them, let’s take a step back and consider why we might want to use

filters. After all, JavaScript already has what you need to perform these kinds of tasks. For example, we could

just as easily have added the code for lowercasing data values directly to the controller, instead of using filters.

Listing 4-3 takes this approach, and it produces the very same result as Listing 4-2.

Listing 4-3. Achieving Same Result Without Filter

<script>
function MyFilterDemoCtrl($scope) {

var someData = {
firstName: 'JENNA',
surname: 'GRANT',
dateJoined: new Date(2010, 2, 23),
consumption: 123.659855,
plan: 'super-basic-plan'

};

// do the lowercaing here instead of using a filter
someData.firstName =

someData.firstName.toLowerCase(); someData.surname =

someData.surname.toLowerCase(); $scope.data =

someData;

}
</script>

Using the approach taken in Listing 4-3, it is true that we bypass the need for filters, but there are a few

things to consider before you choose to adopt this approach. As I discussed in the last chapter, one very good

reason to use AngularJS is because you want to organize your code better and follow some common software

development best practices.

We have talked about the Separation of Concerns principle, so let us take a moment to consider whether or

not formatting tasks, such as changing the case of the text we present to our end users, logically belongs in a

controller. Doesn’t this seem like a task for which the view should be responsible? In one sense, formatting

data for presentation is indeed a view-related concern. However, you could also argue that a controller should

bear some responsibility for making sure that data is ready for use in the view.
The developers of AngularJS take a stance on this and say that such concerns are better dealt with as the

data flows from the controller into the view. In fact, this is why a filter is called a filter; the data is ―filtered‖ as

it travels from the controller into the view.
Some filters can be much more complex than simple case converters. In the lowercase scenario, we were

able to use a single JavaScript method call directly in the controller without things looking messy and out of

place, but had we wanted to implement title casing (whereby the first letter of each word is in uppercase and

the remainder are in lowercase), things would have gotten a lot more involved and required a much more

modular solution. Obviously, having to repeat such logic in each controller or application in which you might

need it is not a very DRY approach.

■ Tip The DRY principle states that “Every piece of knowledge must have a single, unambiguous, and

authoritative representation within a system.” An easier way to say this is simply “Don’t Repeat Yourself.”

While it is true that the filter may be added to the view in multiple places, the underlying implementation
of that filter need only be written once.

Of course, it is up to you to decide how to approach any given situation. Filters are simply an option that

you have at your disposal. Nonetheless, filters are a great way to keep your code modular and clean, as they

make for a good unit of reuse across AngularJS projects. In fact, as there is a vibrant developer community both

contributing to and sharing AngularJS filters online. They make for a good unit of reuse for everyone.

Built-in Filters

The empowering aspect of filters is, in my opinion, the ability to create your own filters and share them with the

rest of the team (or AngularJS community). That being said, AngularJS ships with a very handy set of filters.

We will look at these built-in filters now, starting with the number filter. We will look at how to craft a custom

filter before the end of this chapter.

The Number Filter

This filter will help us address another issue with our sample data: the overly precise value of the
consumption property (which represents the amount of data that the customer has used for this billing

period). Let’s make this friendlier by rounding the number of places after the decimal point. Listing 4-4
shows how you can achieve this.

Listing 4-4. Rounding Up Values with the Number Filter

<!DOCTYPE html>
<html>
<head>

<title>Listing 4-4</title>
<script src="js/angular.min.js"></script>
<script>

function MyFilterDemoCtrl($scope) {

var someData = {
firstName: 'JENNA',
surname: 'GRANT',
dateJoined: new Date(2010, 2, 23),
consumption: 123.659855,
plan: 'super-basic-plan'

};

$scope.data = someData;

}

</script>

</head>
<body ng-controller="MyFilterDemoCtrl">

<p>
Consumption: {{data.consumption }}

Consumption: {{data.consumption | number }}

</p>

</body>
</html>

Figure 4-2 shows both the unfiltered and filtered data generated within the paragraph element. This is a

slight improvement, as now we have just three digits after the decimal point, instead of six.

Figure 4-2. Rounding up numbers with the number filter

Of course, two digits would be far better and much more in line with end users’ expectations. As it

happens, the number filter takes a single parameter, which lets you tell it how many decimal places to round a

number to. This raises a question: How do you pass parameters to a filter? Fortunately, it is very easy. You

use a colon and then enter the parameter value, as shown in the code snippet below.

<p>Data used this quarter: {{ data.consumption | number:2 }} gigabytes</p>
If you replace the paragraph in Listing 4-4 with the preceding snippet and load it into your browser, you

will see output identical to that in Figure 4-3.

Figure 4-3. Using parameters to control the behavior of a filter

As you can see, the number filter, indeed all filters, are quite easy to use. You can very easily change the

format of data without actually changing the underlying data source and without cluttering up the view or
controller with presentation-related code.

If you are working with data in which pinpoint accuracy is required, you should be very careful when you

are performing rounding operations. Due to the way in which computers represent numbers internally, results

are not always totally accurate. A discussion of floating-point-number precision is a little out of scope here,

but you can use your favorite search engine to learn more, if this is something that might be important to you.

The Date Filter

The date filter is indispensable and extremely flexible. Consider the dateJoined property of our sample data. It

has a value which, depending on the time when you view it, looks something like this: 2010-03-

22T13:00:00.000Z. You certainly don’t want to be showing it to end users in this format!

■ TipDon’t be fooled by the name. The date filter not only works with dates but also with times.

The date filter’s flexibility is due, in part, to the large number of format parameters you can pass to it and

how these can be combined to arrive at nearly unlimited ways of displaying dates and times (or portions of

dates and times). Table 4-1 and Table 4-2 show the available parameters. Look over these parameters, and then

we will review a code listing that shows some of the commonly used ones in action.

Table 4-1. Date Filter Parameters

Parameter Description

yyyy Four-digit representation of year (for example, AD 1 => 0001, AD 2010 => 2010)

yy Two-digit representation of year, padded (00–99) (for example, AD 2001 => 01, AD 2010

=> 10)

y One-digit representation of year (for example, AD 1 => 1, AD 199 => 199)

MMMM Month in year (January-December)

MMM Month in year (Jan-Dec)

MM Month in year, padded (01-12)

M Month in year (1-12)

dd Day in month, padded (01-31)

d Day in month (1-31)

EEEE Day in week (Sunday-Saturday)

EEE Day in week (Sun-Sat)

HH Hour in day, padded (00-23)

H Hour in day (0-23)

hh Hour in AM/PM, padded (01-12)

h Hour in AM/PM, (1-12)

mm Minute in hour, padded (00-59)

m Minute in hour (0-59)

ss Second in minute, padded (00-59)

s Second in minute (0-59)

.sss or ,sss Millisecond in second, padded (000-999)

a AM/PM marker

Z Four-digit (+sign) representation of the time zone offset (-1200 – +1200)

ww ISO 8601 week of year (00-53)

w ISO 8601 week of year (0-53)

Table 4-2. Predefined Date Paramters

Parameter Description

medium

equivalent to 'MMM d, y h:mm:ss a' for en_US locale (for example, Sep 3, 2010

12:05:08 PM)

short equivalent to 'M/d/yy h:mm a' for en_US locale (for example, 9/3/10 12:05PM)

fullDate

equivalent to 'EEEE, MMMM d, y' for en_US locale (for example, Friday, September 3,

2010)

longDate equivalent to 'MMMM d, y' for en_US locale (for example, September 3, 2010)

mediumDate equivalent to 'MMM d, y' for en_US locale (for example, Sep 3, 2010)

shortDate equivalent to 'M/d/yy' for en_US locale (for example, 9/3/10)

mediumTime equivalent to 'h:mm:ss a' for en_US locale (for example, 12:05:08 PM)

shortTime equivalent to 'h:mm a' for en_US locale (for example, 12:05 PM)

The parameters in Table 4-1 certainly provide the ability to mix and match and create nearly any date and

time structure you need, but more often than not, you only need a typical date representation. For this, you can
make use of the predefined parameters described in Table 4-2.

Listing 4-5. The Date Filter in Action

<!DOCTYPE html>
<html>
<head>

<title>Listing 4-5</title>

<script src="js/angular.min.js"></script>
<script>

function MyFilterDemoCtrl($scope) {

var someData = {
firstName: 'JENNA',
surname: 'GRANT',
dateJoined: new Date(2010, 2, 23),
consumption: 123.659855,
plan: 'super-basic-plan'

};

$scope.data = someData;

}
</script>

</head>
<body ng-app ng-controller="MyFilterDemoCtrl">

<p>medium: {{ data.dateJoined | date:'medium'}} </p>

<p>mediumDate: {{ data.dateJoined | date:'mediumDate'}} </p>

<p>shortDate: {{ data.dateJoined | date:'shortDate'}} </p>

<p>This customer joined in the month of {{ data.dateJoined | date:'MMMM'}} on a {{

data.dateJoined | date:'EEEE'}} at {{ data.dateJoined | date:'ha'}}</p>

</body>
</html>

In most cases, the predefined date parameters more than fit the bill; though the last paragraph shows

that you can also take a more granular approach. You can see the results in Figure 4-4.

Figure 4-4. Date filter parameters in action

Notice that to produce the month and the day, we use 'MMMM' and 'EEEE', respectively, which both

appear in Table 4-1. You will not, however, see 'ha', as used to produce the time portion (12AM) in Table 4-

1. You will see an 'h' and an 'a', the former being the hour, and the latter being the AM/PM marker. It is

perfectly acceptable, and often necessary, to combine date parameters in this manner.

AngularJS Modules

So far, we have not looked at AngularJS modules. Instead, we have placed all of our code within a controller

embedded within our HTML file, using the script tag. This approach has its place, but it is usually confined to

very small applications and demos (such as the code listings found in books like this). It isn’t the

recommended approach to take for serious development.

What Is a Module?

A module is a collection of controllers, directives, filters, services, and other configuration information. The

main player in all this is angular.module, as it is the gateway into the Module API, the mechanism used to
configure angular modules. It is used to register, create, and retrieve previously created AngularJS modules.

This probably all sounds rather abstract, so let’s look at a practical example by walking through the

process of setting up a default module for our application. The default module is the module that AngularJS

will use as the entry point into your application. (It may even be the only module you use.) Don’t worry if all

this doesn’t make a lot of sense at the moment, as we will look at a complete listing and talk more about what

is happening when we build our custom filter.

Add the following code to a new JavaScript file, which you can name myAppModule.js.

// Create a new module
var myAppModule = angular.module('myAppModule', []);

You just created a module. Wasn’t that easy? The module method was used to create a module named

myAppModule.
We also captured the returned object (a reference to the module just created) in a variable, also named

myAppModule.
You will notice that we also passed an empty array to the module method. This can be used to pass a list

of dependencies; that is, other modules that this module depends upon. We don’t have any dependencies, so we

simply pass an empty array instead.
We now have a module and a reference to this module, so now we can configure it with a custom filter, by

adding the following code below the previous line of code:

// configure the module with a filter

myAppModule.filter('stripDashes', function() {
return function(txt) {

// filter code would go here

};
});

Don’t worry too much about the code within the filter method for now. This is something we will see more

of when we build a custom filter in the next section. The important part is that you attached a filter to the

module. The filter method lets you name your filter (we called this one stripDashes, because, as you will see in

the next section, it strips any dashes that might be contained within strings) via its first argument, and it lets

you pass in a function as the second argument. We will explore the purpose of this function shortly.
In a similar way, we can also add a controller to our module. In the preceding code, we used the filter

method to configure a filter. In the following code, we use the controller method to configure a controller.

// configure the module with a controller

myAppModule.controller('MyFilterDemoCtrl', function ($scope) {
// controller code would go here

}
);

Again, we get to provide a name ('MyFilterDemoCtrl') and pass in a function. This function is basically
the same function that we have been using as our controller within the script tags so far, only now it is attached
to a module.

If controllers and other logic, such as filters, are created within an AngularJS module, how are they
accessed and used? This relates to the AngularJS bootstrapping process.

Bootstrapping AngularJS

We talked briefly about the ngApp directive earlier in the book, though we didn’t really talk about the role it

plays in bootstrapping AngularJS. It might already have occurred to you that AngularJS is hard at work

behind the scenes, monitoring form fields, for example, so that it can respond to any changes and

immediately update any bindings.
In fact, AngularJS is doing quite a lot behind the scenes, and it all starts to happen once the document is

loaded, because it found an ngApp directive. So far, we have used ngApp in its simplest form, as an attribute

without any value. However, you can specify an AngularJS default module, by providing a value. The

following code snippet shows ngApp with a value of 'myAppModule', which is the name of the module we

have just created.

<html ng-app="myAppModule">

With the ngApp directive in place, we can save our module, myAppModule.js, into the js directory. Then

we can create a new page, index.html, which will make use of this module. The next two code listings

(Listings 4-8 and Listing 4-9) will pull all of this together.

Listing 4-8. myAppModule.js

// create a new module called 'myAppModule' and save
// a reference to it in a variable called myAppModule var

myAppModule = angular.module('myAppModule', []);

// use the myAppModule variable to
// configure the module with a controller

myAppModule.controller('MyFilterDemoCtrl', function ($scope) {
// controller code would go here

}
);

// use the myAppModule variable to
// configure the module with a filter

myAppModule.filter('stripDashes', function() {
return function(txt) {

// filter code would go here
};

});

Listing 4-8 is the module file in which we create a module and then configure a controller and a filter.

Notice that we named the JavaScript file 'myAppModule.js'; we named the variable, which stores a reference

to the module 'myAppModule'; and we named the module itself 'myAppModule'. This is not an issue, and it

does not always have to be the case that naming follows this pattern. The key thing is to recognize that when

we talk about the module, we are talking about the object we created and named when we called the

angular.module method. It is this name that we can use to get a reference to the module whenever we need it.

To clarify this, Listing 4-9 shows a slightly different approach to setting up and configuring the module.

Listing 4-9. Referring to the Module by Name

// Create a new module

angular.module('myAppModule', []);

// configure the module with a controller
angular.module('myAppModule').controller('MyFilterDemoCtrl', function ($scope) { //

controller code would go here
}

);

// configure the module with a filter
angular.module('myAppModule'). filter('stripDashes', function() {

return function(txt) {
// filter code would go here

};
});

This file does not use a variable to store a reference to the module. Instead, it uses the single argument

version of the angular.module method to retrieve a reference to it. This single argument is the name we gave

the module when we created it. It really doesn’t make much difference which approach you use, and both are

commonly used. I prefer the approach in Listing 4-8, where we store a reference, as there is less repetition of

the module name, so fewer chances of typos creeping in. Sometimes, however, you might find you need to get a

reference to a module, and the single argument version of the module method might be the only way to get it.

Now let's turn our attention to Listing 4-10 and the next step in the process.

Listing 4-10. An index.html File Set Up to Use

myAppModule <!DOCTYPE html >

<html ng-app="myAppModule">
<head lang="en">

<meta charset="UTF-8">
<title>Listing 4-10</title>
<script src="js/angular.min.js"></script>
<script src="js/myAppModule.js"></script>

</head>
<body ng-controller="MyFilterDemoCtrl">

</body>
</html>

With the default module created, all we have to do now is to associate it with our index.html page. We use

ngApp with the name of the module as its value to bootstrap the whole AngularJS process. Take note that we

still have to provide a script reference to the myAppModule.js file, so that AngularJS can actually find the

module we declared in the ngApp directive.
There is slightly more work in setting up a default module as opposed to lumping everything together in

the HTML file, but it’s easy enough and soon becomes second nature. You should feel somewhat inspired by

the clean look of the index.html page above. As you will see, having the JavaScript file separated from the

HTML is well worth the trouble. However, that is not all that we have achieved. We have also set up our

application to use the AngularJS module system, and this enables you to tap into all the benefits that go with

it.

Creating a Custom Filter

At last, it’s time to look at creating a custom filter. Modules are great, but, while important, they’re probably
not the most exciting topic! This is perhaps because they don’t directly produce any visual output. However,

custom filters are more exciting, and we are going to use one to solve another issue that we have with our

sample data.

For some unknown reason, some values sent back to us are dash delimited. The back end team has told us

that this is the way that the data is stored in the database and that it cannot change it. Nonetheless, we aren’t

very keen on presenting it to our end users in this format. The plan property is an example of this; it has a

value of "super-basic-plan". We could easily deal with one case of this without a filter, but we will assume it

is a common problem, and we will use a filter to solve it across the whole application.
I find that the best way to go about writing a filter is first to forget about filters. I get the logic working

as regular JavaScript, and then I tie it into a filter once I am satisfied. The requirement here is relatively

simple: we want to remove any dashes and replace them with spaces. Listing 4-11 shows a basic script that
does just what we need.

Listing 4-11. A Simple Replace Dashes Function

<script>

function stripDashes(txt) {
return txt.split('-').join(' ');

};

console.log(stripDashes("super-basic-plan"));

console.log(stripDashes("something-with-a-lot-more-dashes-plan"));

console.log(stripDashes("noDashesPlan"));

</script>

This function is relatively straightforward. It accepts a single argument—the dash delimited string—and

returns the modified string. We have used a few calls to console.log for the purpose of verifying our
expectation that it will strip out all of the dashes and leave spaces in their place. The following output suggests

this function is fit for this purpose:

super basic plan
something with a lot more dashes plan
noDashesPlan

■ Tip These days, it is increasingly common for JavaScript programmers to write formal unit tests, but we

won’t explore that topic very much in this book. Realistically, a few calls to the console.log method do not

constitute proper testing. As you have chosen to read a book about a framework that fully supports unit testing,

I strongly recommend that you read up on the topic in the near future.

As the function is working as we expect it to, we are now ready to convert it to an AngularJS filter. The

method we use to create an AngularJS filter is named, unsurprisingly, filter. It accepts two arguments: a name

for the filter and a factory function. We will name our filter 'stripDashes', and we will create a factory function

that returns our stripDashes function. That may have sounded a tad confusing, particularly the bit about factory

functions. As usual, a code listing should help clarify. Listing 4-12 is the filter method from Listing 4-9, revised

to include the actual filter logic.

Listing 4-12. An Angular Filter Implementation

myAppModule.filter('stripDashes', function () {

// the function we are in returns
// the function below
return function(txt) {

return textToFilter.split('-').join(' ');
};

});

Of particular note here is the fact that the filter function does not itself implement our logic; rather, it

returns a function that implements it. This is why that second argument supplied to the filter method is called a

―factory function‖; its main purpose in life is to manufacture functions. This can seem a little strange at first, but

it is a common design pattern (generally known as the factory pattern), and it’s certainly not difficult to

implement. It might help if you think about this from AngularJS’s point of view: we don’t want to use a

function here and now, but we do want to return a function to AngularJS, for it to utilize whenever we invoke

the associated filter.
The argument we named txt represents the expression value that is passed in to this filter function when

it is used, that is, it’s the value we are filtering. In Listing 4-13, which uses our new custom filter, you can see

that txt will be the value of data.plan.

Listing 4-13. Trying Out the stripDashes Filter

<!DOCTYPE html>
<html>
<head>

<title>Filter Demo</title>
<script src="js/angular.min.js"></script>
<script

src="js/myModules/myAppModule.js"></script> </head>
<body ng-app="myAppModule" ng-

controller="MyFilterDemoCtrl"> <p>Plan type:

{{data.plan}}</p>
<p>Plan type: {{data.plan | stripDashes}}</p>

</body>
</html>

There you have it, a very handy filter that we can reuse across our application. As an additional example,

let’s create another filter. As I mentioned earlier in the chapter, we can improve upon the way we handle the

firstName and surname by using a technique known as title casing, instead of simply converting them to

lowercase. We can do this by making sure the first character is in uppercase and all of the remaining characters

are in lowercase. As before, let’s first write the code that will accomplish this, before we create the filter itself.

Have a look at Listing 4-14.

Listing 4-14. A Basic Title Casing Function

<script>

function toTitleCase(str)
{

return str.charAt(0).toUpperCase() + str.substr(1).toLowerCase();
}

console.log(toTitleCase("jennifer"));
console.log(toTitleCase("jENniFEr"));

console.log(toTitleCase("jENniFEr amanda

Grant"));
</script>

Let’s have a look at the output of Listing 4-14 and see if it meets our needs.

Jennifer
Jennifer
Jenni.amanda grant

It’s a fairly simple function, and it does what we need it to do. That is to say, it will indeed convert the

firstName and surname to title case. It does so by using the string method’s charAt() method to access and

convert the first character to uppercase (as returned by str.charAt(0).toUpperCase()) and concatenating the

resulting value to a lowercased portion of the string that consists of all but the first character (as returned by

str.substr(1).toLowerCase()).
However, I don’t like the fact that this function works only on the very first word when it is given a

multiple word string as an argument. While we could perhaps get away with this for the cases in which we

only want to work with a single word, it is not a very forward-thinking approach. Let’s add the ability to

handle multiple words (see Listing 4-15).

Listing 4-15. A Better Title Casing Function

<script>

function toTitleCase(str)
{

return str.replace(/\w\S*/g, function(txt){return txt.charAt(0).toUpperCase() + txt.

substr(1).toLowerCase();});
}

console.log(toTitleCase("jennifer"));
console.log(toTitleCase("jENniFEr"));

console.log(toTitleCase("jENniFEr amanda

Grant"));

</script>

The following output shows that this is a better implementation. The last line now shows that each word

has had its first character converted to uppercase.

Jennifer
Jennifer
Jennifer Amanda Grant

Of course, the function is now a little more complicated. The trick to understanding it lies in the use of the

string object’s replace() method. This method is very powerful, but it does require some knowledge of regular

expressions before you can truly master it. A regular expression is a sequence of symbols and characters

expressing a pattern to be searched for within a longer piece of text. The first argument to this method is a

regular expression, which looks like this: /\w\S*/g. More specifically, in this particular case, it is looking for

each individual word. The anonymous function, which is the second argument, is executed for each word that

is found. This function uses the same logic you saw in Listing 4-12; therefore, each word now has its first

character converted to uppercase and all remaining characters converted to lower case.

Now we will use this approach to create another filter in the module we created in Listing 4-9. We will
name this one toTitleCase. This is shown in Listing 4-16.

Listing 4-16. An Angular Filter Implementation

myAppModule.filter("toTitleCase", function () {

return function (str) {
return str.replace(/\w\S*/g, function(txt){ return txt.charAt(0).toUpperCase() + txt.

substr(1).toLowerCase();});
};

});

With the filter in place, we can now make use of it. Listing 4-17 shows it in action. In this example, we

show the filter working on individual words (firstName and surname), and we also see it in action on a
concatenation of firstName and surname.

Listing 4-17. Using the toTitleCase Filter

<!DOCTYPE html>
<html>
<head>

<title>Filter Demo</title>
<script src="js/angular.min.js"></script>
<script

src="js/myModules/myAppModule.js"></script> </head>
<body ng-app="myAppModule" ng-

controller="MyFilterDemoCtrl"> <!-- Display customer name in

title case --> <p>First Name: {{data.firstName | toTitleCase}}</p>
<p>Surname: {{data.surname | toTitleCase}}</p>
<p>Full Name: {{ data.firstName + data.surname | toTitleCase}}</p>

</body></html>

CHAPTER 4

Directives

Most JavaScript frameworks have a ―special something‖ that sets them apart. That special something in the

case of AngularJS is undoubtedly directives. The idea that we can use a declarative approach that lets us

augment HTML with new capabilities has great appeal. I suspect this has very much to do with clean looks and

intuitive syntax, but it might be because it is a fun and enjoyable way to approach client-side web development.
In this chapter, I will recap some of the things we have already been using, by looking at the built-in

directives.
You will also have a first look at creating custom directives.

Directives, in Angular JS, are essentially JavaScript functions that are invoked when the Document Object

Model (DOM) is compiled by the Angular JS framework. I will touch on what is meant by the DOM being

―compiled‖ when we take a peek behind the scenes later in the chapter, but for now, it is enough to know that

directives are ―attached‖ to their corresponding DOM elements when the document is loaded.

■ Tip Don’t let the word compiler scare you off! It is simply AngularJS terminology for the internal
mechanism that is used to associate directives with HTML elements.

Due to this this powerful concept, Angular JS lets you create totally new directives that we can use to
encapsulate logic and simplify DOM manipulation—directives that can modify or even create totally new
behavior in HTML.

What can we use directives for? As directives can modify or even create totally new behavior, we can use

directives for anything from simple reusable blocks of static content right through to sophisticated client-side

user interfaces with network and database connectivity—and everything else in between. The built-in

directives provide the general level of functionality that you would expect to find—the bread-and-butter

directives, so to speak—though custom directives let you push things much further. The only limit is your

imagination. (Well, maybe your JavaScript skills have some impact on this too!)
Of course, Angular JS is much more than directives; however, they do seem to be the main attraction. I

hope, by the end of this chapter, you will have gained an appreciation of why this is so.

The Basics of Directives

What do directives look like? You are no doubt thinking that you have seen enough in use so far to know the
answer to that question. It may surprise you to learn that directives can take on a few different forms. Let’s

pick on the ngController directive as an example.
As you know, the ngController directive looks like the following:

<div ng-controller="myFilterDemoCtrl"></div>

This is a typical directive declaration, and it is by far the most common way to use directives: that is, as
an attribute. One potential issue with this approach is that the document that contains it will not validate as

HTML5-compliant. If this is a concern to you, or your organization, you can do the following instead:

<div data:ng-controller="myFilterDemoCtrl"></div>

This is very similar to the approach to which we are accustomed, though here we use the prefix data:

before our directive name. Validators are happy with this, because it uses a standard approach to creating
custom data attributes.

In both the preceding cases, we invoke the directive using an attribute, though this is not our only option.
All of the following methods are also technically possible:

As an attribute:

As an element:

<my-directive></my-directive>

As a class:

As a comment:

<!-- directive: my-directive expression -->

I say ―technically possible,‖ because directives authors may or may not have enabled their directives to be

used in all possible forms. You will learn more about this when we build a custom directive later in this chapter.

In reality, you won’t use the last two options, as they exist mainly for use with much older browsers, and you

will rarely see them in use in the wild. Still, it’s nice to have options, and at least you won’t be caught unawares

if you should stumble upon any of these.

Using Directives

A directive is rarely an island unto itself. That is to say, directives often need to communicate and interact with
the rest of your application. This is usually done through a scope, as you have seen in previous chapters. Let’s

start building a small part of an application that shows this idea in action.

Listing 5-1 shows product-detail.html. This is the HTML and CSS code for a product selection page. We

will focus our efforts on an exciting new fictitious product: the AngularJS socks. These amazing socks, created

specifically to warm the feet of AngularJS developers, come in a variety of colors. The requirement here is to

hide the list of available colors until the customer is ready to choose one. The directives we will use to achieve

all of this are ngClick, ngHide, and ngController.

The bulk of this code is the CSS, which, for the most part, sets up the colors for the associated div

elements. You will see that, due to the ng-hide="isHidden" directive placed on each of these div elements,

the page defaults to a state in which the color list is hidden.

Listing 5-1. product-detail.html, a Basic Product Detail

Page <!DOCTYPE html >

<html ng-app="myAppModule">
<head>

<title></title>
<script src="js/angular.js"></script>
<script src="js/myAppModule.js"></script>
<style>

body {
font-family: "Lucida Grande", "Lucida Sans Unicode", Helvetica, Arial, sans-serif;

}

div {
margin: 20px;
padding: 20px;
font-size: 16px;
color:#ffffff;

}

#red {
background-color: red;

}

#green {
background-color: green;

}

#blue {
background-color: blue;

}

#purple {
background-color: purple;

}

#gray {
background-color: gray;

}

#olive {
background-color: olive;

}

</style>
</head>
<body ng-controller="myProductDetailCtrl">

<h2>AngularJS Socks</h2>

<p>Keep warm this winter with our 100% wool, 100% cool, AngularJS socks!</p>

<button ng-click="showHideColors()" type="button">
{{isHidden ? 'Show Available Colors' : 'Hide Available Colors'}}

</button>

<div id="red" ng-hide="isHidden">Red</div> <div

id="green" ng-hide="isHidden">Green</div> <div

id="blue" ng-hide="isHidden">Blue</div> <div

id="purple" ng-hide="isHidden">Purple</div>
<div id="gray" ng-hide="isHidden">Dark Slate Gray</div>

<div id="olive" ng-hide="isHidden">Olive</div>

</body>
</html>

Figure 5-1 shows how this page looks when it first loads. A product description and a button that will show

or hide the available colors when clicked are displayed.

Figure 5-1. The default view of product-detail.html>
As available space on today’s screens can be quite limited, it is incredibly useful to be able to hide

information and to make it available on demand. Figure 5-2 shows how it looks when the Show Available
Colors button is clicked.

Figure 5-2. The Show Available Colors view of product-detail.html

The interesting thing about this implementation is how the logic is assembled. It’s intuitive, and it doesn’t

leave a trail of messy JavaScript code in its wake. In fact, the product-detail.html file is primarily HTML and

CSS code. Ofcourse, there must be some JavaScript code somewhere. I’m hoping that, with last chapter’s

coverage of modules in mind (and the ng-app="myAppModule" directive on the second line), you already

know where this JavaScript is. It is tucked away in a module file. Let’s have a look at this module now (see

Listing 5-2).

Listing 5-2. The myAppModule.js Application Module

// Create the module

angular.module('myAppModule',

[]);

// configure the module with a controller
angular.module('myAppModule').controller('myProductDetailCtrl', function ($scope) {

// Hide colors by default

$scope.isHidden = true;

// a function, placed into the scope, which
// can toggle the value of the isHidden variable

$scope.showHideColors = function () {
$scope.isHidden = !$scope.isHidden;

}

}
);

It’s surprisingly short, mainly because we don’t actually do very much heavy lifting ourselves. Instead, we

concentrate on managing the state of the isHidden variable. The ngHide directive is taking care of how the
underlying task is actually implemented.

As you may have come to expect by now, we are utilizing the scope object. Consequently, the isHidden

variable and the showHideColors() function can be used in the directives expressions. These two actions

constitute the wiring up of our logic.
Take a look at the following excerpts from the product-detail.html file from Listing 5-1. You can see

where the showHideColors() function that we assigned to the scope is used by ngClick

<button ng-click="showHideColors()" type="button">
{{isHidden ? 'Show Available Colors' : 'Hide Available Colors'}}

</button>

. . . and where the isHidden variable we assigned to the scope is used by ngHide

<div id="red" ng-hide="isHidden">Red</div>

Why are all of the color divs hidden by default? This is because the expression, isHidden, provided to the

ngHide directive on each of the divs evaluates to true. What is really cool, due to the live updating that Angular

JS performs, is that anytime the value of isHidden changes, ngHide will respond accordingly. Of course, we

want it to change, and that is why we use the Show Available Colors button along with the ngClick directive.
The button uses the ngClick directive, and the expression we pass to this directive is a call to our

showHideColors() function. It is this function call that will change the state of the isHidden variable, thereby

causing the ngHide directive’s expression now to evaluate to false. Consequently, the color divs become

visible.
An interesting requirement in the case of the button is that we want the text to adapt when the button is

clicked. We do this using a particularly helpful technique that can be used within Angular JS expressions. I’m

referring to the following line:

{{isHidden ? 'Show Available Colors' : 'Hide Available Colors'}}

This expression uses the ternary conditional operator. It can look a little odd if you haven’t seen it before,

but it’s actually quite easy to use. The first portion, the bit before the ? (question mark), must evaluate to true or

false. If it evaluates to true, the statement before the : (colon) is executed; otherwise, the one after it is executed.

In our case, the text appearing on the button will update itself, based on whether or not the color divs are

currently hidden, because we use isHidden to drive the outcome.

For a relatively small amount of code, we get a fairly useful piece of functionality. This shows how

directives can be greater than the sum of their parts. It also shows, I hope, that directives can lead to well-

encapsulated code that can keep complexity out of sight. We can do even better still, but we will get to that

when I cover custom directives in the last section of this chapter.

Built-in Directives

In this section, we will take a look at a few very useful built-in directives. We can’t look at all of them here,

as it would take far too long. However, I would like to give you a sense of the directives that ship with the

framework and some examples of how they work. I won’t pay much attention to HTML form-related

directives, as these get their own coverage in the next chapter.

ngBind

Much of the time, you don’t use ngBind directly, because the double curly braces achieve the same
thing. For example, the following two code snippets are functionally equivalent:

{{2+2}}

Both ngBind and the expression syntax ask Angular JS to display the value of a given expression and

update the output accordingly when the value of that expression changes.
If we have expressions, why bother to use ngBind? A benefit of using the ngBind approach relates to the

fact that, if a document takes some time to load, your HTML page might temporarily show the raw expressions

to your end users. That is to say, they may literally see the {{2+2}} appear momentarily before Angular JS gets a

chance to compile it and show the desired values. Using ngBind does not have this unfortunate side effect.
You probably don’t want to give up using the curly brace syntax, so keep reading. The ngCloak directive

is here to save the day.

ngCloak

If your document is taking time to load, and you are noticing issues with the raw expressions that are

appearing, you don’t have to use the ngBind approach mentioned previously. You can use ngCloak instead.

This directive is shown in action following:

<p ng-cloak>{{ 2 + 2 }}</p>

Here we ―cloak‖ the Angular expression simply by declaring ngCloak (no value is required for this

attribute). The cloaking of the expression happens because ngCloak applies a CSS rule that hides it, although

it is only hidden until Angular JS has determined that it can display the evaluated value.
It is tempting simply to add this directive to the body element, so that it applies to the whole document

hierarchy, but often this is not a good idea. This would prevent the browser’s natural desire to render the page

progressively. Instead, it is often better to apply it on individual elements. Better yet, if your document is not

large enough to be exhibiting this undesirable behavior, don’t use it at all!

ngInclude

This handy directive lets you include the contents of another file within your document. Take, for example, the
very small file in Listing 5-3, which we have named include-me.html.

Listing 5-3. include-me.html

<p>Thanks for visiting our website!</p>

Now, let’s include this file’s output at the bottom of includes-in-action.html (see Listing 5-4).

Listing 5-4. includes-in-action.html

<!DOCTYPE html>
<html>
<head>

<title></title>
</head>
<body>
<h1>Includes in Action</h1>

<p> You should see the inluded files contents below</p> <div
ng-include="'include-me.html'"></div>

</body>
</html>

This directive is easy to use, but there is one potential pain point for the Angular JS beginner. Be aware

that ngInclude expects to be supplied with an Angular JS expression. Remember, an Angular JS expression is

a subset of JavaScript, and it follows all the usual rules. A string must either be single-quoted or double-

quoted. As the Angular JS expression is itself double-quoted, the string you provide within it must be single-

quoted. This is why we use "'include-me.html'". Using "include-me.html" simply wouldn’t work.

ngShow and ngHide

The ngShow directive will show or hide the HTML element upon which it is defined. The element is shown or

hidden by adding or removing a predefined AngularJS class called ng-hide. The p element in the following

example will be shown only when $scope.correctAnswer is true.

<p ng-show="correctAnswer">That answer is correct!</p>

If we assume that $scope.correctAnswer is false; looking at the source code of the HTML page would

reveal that the ngHide class has been added to the p element by the AngularJS framework.

<p ng-show="isCorrectAnswer" class="ng-hide">That answer is correct!</p>

The ng-hide class is very simple and nothing more than a single CSS rule, as follows.

.ng-hide{
display: none !important;

}

As you might imagine, the ngHide directive does the exact opposite. The following example achieves

the same result as the previous example, but by asking the question in a different way. Here, the text within

the p element is hidden when $scope.correctAnswer is not true.

<p ng-hide="!correctAnswer">That answer is correct!</p>

ngRepeat

The ngRepeat directive is definitely one of the most useful built-in directives. It is, essentially, a looping

construct that instantiates a template once for every item in a collection (for example, an array). It also has a

number of useful built-in variables, which are shown in Table 5-1.

Table 5-1. ngRepeat Built-in Variables
Variable Name Type Description

$index Number Iterator offset of the repeated element (0..length-1)

$first Boolean True, if the repeated element is first in the iterator

$middle Boolean

True, if the repeated element is between first and last in the

iterator

$last Boolean True, if the repeated element is last in the iterator

$even Boolean True, if the iterator position $index is even (otherwise, false)

$odd Boolean True, if the iterator position $index is odd (otherwise, false)

Let’s have a look at a code listing (Listing 5-5) that puts ngRepeat and some of these built-in variables to

use.

Listing 5-5. Using ngRepeat with Some of the Built-in Variables

<h2>My Favourite Cities</h2>
<div ng-repeat="city in ['Liverpool','Perth','Sydney','Dublin','Paris']">

{{$index}}. {{city}}
{{$first ? '(This is the first row)' : ''}} {{$last ? '(This is the last row)' : ''}}

</div>

The output can be seen in Figure 5-3. The $index variable gives us the row numbers, and we use $first and
$last to output conditionally, whether or not we are on the first or last row, respectively. The most important
thing to understand about this ngRepeat example is the format of the expression with which we provide it.

"city in ['Liverpool','Perth','Sydney','Dublin','Paris']"

This format follows the variable in collection pattern. I chose the name ―city‖ for the variable, and the

collection is the array of cities. Another important thing to know about ngRepeat is that it creates, at each pass

through the loop, a new scope object, each one quite distinct from the controller’s own $scope object. In fact,

this is why we can have different values for variables, such as $index and city.

Event-Handling Directives

We have seen ngClick already, though Angular JS comes with similar directives for handling the usual browser

events, such as ondblclick, onblur, onfocus, and onsubmit. Each directive works pretty much as you would

expect and is named using the same format. So, for the list of events I just mentioned, we would have the

corresponding Angular JS versions: ngDblclick, ngBlur, ngFocus, and ngSubmit.
You don’t have to use these directives, as Angular JS in no way prevents you from using the regular

JavaScript event handlers. However, it is generally recommended that you do use them, especially if you want

to stay within the Angular JS framework. For example, a big difference between regular events and their

Angular JS equivalents is that the equivalents take Angular JS expressions. This means that you have access to

the implicitly available $scope object, among other things.

Creating a Custom Directive

While there are plenty of built-in directives, you will occasionally need to build your own application-specific
directives. In this section, we will look at an example that should serve to get you up to speed on the basics of

how to do just that. Custom directives can seem a bit intimidating at first, mainly because there are a lot of
moving parts.

My aim here is to get you up to speed with the basics and put you in good shape to tackle the more

advanced aspects as and when you need them. To achieve this, we will create a custom directive that we will

call colorList. This directive will encapsulate much of the code we looked at in Listing 5-1. To recap, this

produced a color selection list, which could be activated and deactivated using a button. Listing 5-6 shows how

this directive can be used within the product-detail.html file.

Listing 5-6. The colorList Directive in Use

<!DOCTYPE html >
<html ng-app="myAppModule">

<head>
<title>A Custom Directive</title>
<script src="js/angular.min.js"></script>
<script src="myAppModule.js"></script>

</head>
<body ng-controller="myDemoCtrl">

<h2>AngularJS Socks</h2>
<p>Keep warm this winter with our 100% wool, 100% cool, AngularJS socks!</p>

<div color-list colors="colorsArray"></div>

</body>
</html>

As you can see, it’s quite easy to use this directive. It looks and behaves in the same way as product-

detail. html. It houses a button that is used to show and hide the available colors, but rather than hard-code the

colors using manually crafted div elements, as we did earlier, we will make this directive much more reusable,

by using
a colors attribute. This allows us to pass in an array of colors, so that we can determine which colors to
use on a case-by-case basis.

Like filters and controllers, directives are configured on a module. Let’s examine how this works (see

Listing 5-7).
It should look relatively familiar.

Listing 5-7. Configuring a Directive

myAppModule.directive('colorList', function () {

return {

restrict: 'AE',
template:

"<button ng-click='showHideColors()' type='button'>"
+ "{{isHidden ? 'Show Available Colors' : 'Hide Available Colors'}}"
+ "</button><div ng-hide='isHidden' id='colorContainer'>"
+ "</div>"

}
});

We’ll build on this until our directive is fully implemented, but for now, let’s focus on what is achieved in

Listing 5-7. Using the directive method on the module, we have registered a directive with the Angular JS

framework.
We named this directive, via the first argument, colorList. The second argument is an anonymous function,

which
returns a directive definition object. This is a regular JavaScript object that we need to set up with various

properties
that tell Angular JS all about our directive. So far, all that we have configured is the restrict and template

options.
Let’s deal with restrict first.

The restrict Option

The restrict option is used to specify how a directive can be invoked. As you saw earlier, there are four
different ways to invoke a directive. This corresponds to the four valid options for restrict.

Table 5-3 provides an example of each valid option. As our directive uses the value 'AE'; this means that it

can be invoked as either an attribute or an element. As I mentioned earlier in this chapter, you won’t use the last

two options, C and M, as they exist mainly for use with much older browsers.

Table 5-3. Valid restrict Options

Option Example

A

E <color-list></color-list>

C

M<!-- directive: color-list -->

When should you use an element and when should you use an attribute? You can use either, and the end

result will be the same. However, the Angular team recommends that you use an element when you are

creating a component that is in control of the template and an attribute when you are decorating an existing

element with new functionality.

The template Option

As the name suggests, the template option lets you define a template. The template is appended to your

directive declaration by default (though there is a replace option that allows you to replace the element on

which the directive occurs entirely). Let’s consider the HTML code that I have provided as the value to the

template option. I have shown this again in Listing 5-8, but, this time, without the string quotations, so it is

easier to read.

Listing 5-8. The Value of the template Option

<button ng-click='showHideColors()' type='button'>
{{isHidden ? 'Show Available Colors' : 'Hide Available Colors'}}

</button>

<div ng-hide='isHidden' id='colorContainer'></div>

You will recognize the button and the expression within it. The div with the id of colorContainer is new.

This is because we will abandon the approach of hard-coding the color divs manually in favor of dynamically

appending them to this div, based on array values. We will see this in action shortly.

The link Option

The function that you assign to the link option is where the main action takes place. This function has access

to the current scope (by default) and the element on which the directive was declared (the div element, in this

case). For clarity, let’s list precisely what we want this directive to achieve. This will make it easier to follow

the rationale behind the implemented logic. The directive should perform the following:

1. Add a button to the page. This button will be a toggle for showing and hiding a
list of colors.

2. By default, the color list should be hidden.

3. The colors should be shown as div elements that can display a color and color
name, based on an array of strings corresponding to that color.

4. The color list should be an array containing CSS color name values. This

should be available within the directive.
We need a link function that achieves all but one of these requirements. The first requirement is already

met, because the button is defined in the HTML we assigned through the template option. The second

requirement is partially met, but it still needs work. I say partially met, because the template also has the

colorContainer div, which will be the parent container for our color list. This div makes use of the ngHide

directive.
Listing 5-9 shows our link function. This function completes the requirements we listed earlier. I will put

this in context with the rest of our custom directive shortly, but for now, see if you can pick out what is
happening here.

Listing 5-9. The link Function

link: function ($scope, $element) {

// set default state of hide/show

$scope.isHidden = true;
// add function to manage hide/show state

$scope.showHideColors = function () {
$scope.isHidden = !$scope.isHidden;

}

// DOM manipulation
var colorContainer = $element.find('div');
angular.forEach($scope.$parent.colorsArray, function (color) {

var appendString = "<div style='background-color:" + color + "'>" + color + "</div>";
colorContainer.append(appendString); });

}

The first thing to notice about the link function is that we have access to the element on which the

directive is defined and a scope object (via the $element and $scope arguments accepted by the function).

These are automatically injected into our function by the framework.
The first batch of logic in this function simply sets the default state of the directive such that the

color list is hidden. Next, we attach the showHideColors() function to the scope. The next batch of logic,

under the DOM manipulation comment, is the real meat of the directive.
We want to add div elements dynamically to the colorContainer div, so we create a variable

called colorContainer. To achieve this, we used the following statement:

var colorContainer = $element.find('div');

If you have used jQuery before, this might look familiar. This is because $element is a jQuery wrapped

element and, as such, can use jQuery methods, such as find() and append().

With the colorContainer reference in hand, we can now create the color list by attaching to it a div for each

color in the array. We do this by looping through the colors array, using the handy angular.forEach method

and, at each pass, append to build the list of colors.

Within the forEach loop, we do the append operation by creating a div element as a string value that is

constructed using the current array item (the CSS color name). This is used as both the value of the

background-color CSS rule and as the literal text that displays within the div.

var appendString = "<div style='background-color:" + color + "'>" + color + "</div>";

colorContainer.append(appendString);

Both the HTML page that uses the directive and the module that contains the directive and controller

code are shown in Listing 5-10 and Listing 5-11, respectively.

Listing 5-10. product-detail.html, Revised to Use a Custom

Directive <!DOCTYPE html >

<html ng-app="myAppModule">
<head>

<title></title>
<script src="https://ajax.googleapis.com/ajax/libs/angularjs/1.2.21/angular.min.js"></script> <script

src="/compass/src/js/myAppModule.js"></script> <style>

#colorContainer div {
color: white;
text-transform: uppercase;
width: 200px;
padding: 10px;
margin:5px;
border-radius: 5px;
-moz-border-radius: 5px;

}
</style>

</head>
<body ng-controller="myDemoCtrl">
<h2>AngularJS Socks</h2>

<p>Keep warm this winter with our 100% wool, 100% cool, AngularJS socks!</p>

<div color-list colors="colorsArray"></div>
</body>
</html>

Listing 5-11. The Application Module Containing Our Directive Registration and Our Controller

// declare a module
var myAppModule = angular.module('myAppModule', []);

myAppModule.controller('myDemoCtrl', function ($scope) {
$scope.colorsArray = ['red', 'green', 'blue', 'purple', 'olive']

}
);

myAppModule.directive('colorList', function ($compile) {

return {

restrict: 'AE',
template: "<button ng-click='showHideColors()' type='button'>"

+ "{{isHidden ? 'Show Available Colors' : 'Hide Available Colors'}}"
+ "</button><div ng-hide='isHidden' id='colorContainer'>"
+ "</div>",

link: function ($scope, $element) {

// set default state of hide/show
$scope.isHidden = true;
// add function to manage hide/show state
$scope.showHideColors = function () {

$scope.isHidden = !$scope.isHidden;
}

// add colors divs to the document
var colorContainer = $element.find('div');
angular.forEach($scope.colorsArray, function (color) {

var appendString = "<div style='background-color:" + color + "'>" + color + "</
div>";

colorContainer.append(appendString);
});

}
};

});

CHAPTER 5

Working with Forms

Since their introduction in the mid-90s, HTML forms have taken a largely static World Wide Web and turned it

into a place of business and a rich source of interactivity and entertainment. Initially, HTML forms were

functionally limited and clunky, but the specification evolved, and developers learned to work around the

issues. Today, thanks in large part to frameworks such as AngularJS, HTML forms are the underlying reason

that web-based applications now rival traditional desktop applications. To put all of this more concisely:

HTML forms cannot be ignored!
In this chapter, we will look at how to use AngularJS with forms and how to perform tasks such as model

binding and data validation. Fortunately, AngularJS doesn’t require that you learn about forms from scratch, as

it simply enhances the way forms already work, although these enhancements are not always obvious or

intuitive. Before we get into all that, however, let’s start with a brief recap of what standard forms offer us.

The form Element

The form element itself is a good place to begin. This element defines the form as a whole, and it is a

responsible mechanism for telling the web browser what to do once the user presses the submit button. For

instance, where should it send the data that was collected, and what method should it use to send this data? It

does this via its action and method attributes, respectively.

<form name="myForm" action="myserver/someaction" method="post">
...

</form>

The form in the preceding code snippet is configured to use the post method and to submit its data to

myserver/ somescript.php. Besides the method and action attributes that set these values, there is a name

attribute that we have set to "myForm". In AngularJS, it is quite likely that the name attribute will be far more

important to you than the other form element attributes. Why is this? In short, it is because developers tend to

use Ajax to send data to the server, and they often do not rely on the form element’s attributes to determine how

the Ajax operation is carried out. (I discuss this further in the next chapter.) Setting a name on the form will

give you access to some very worthwhile AngularJS features, which we will examine shortly.

■ Tip Ajax is a group of technologies used in combination. However, JavaScript developers often use the

term to refer to the use of JavaScript for exchanging data asynchronously between a browser and server to

avoid full-page reloads.

Of course, a form is no good without form-related elements nested within it, so let’s look at these next.

We’ll start with the very versatile input element.

The input Element

The input element is the form workhorse. You can use it to create text fields, check boxes, radio buttons, and
more. It all hinges on what you specify as the value of its type attribute. Its possible values include the
following:

button
checkbox
file
hidden
image
password
radio
reset
submit
text

Following, we will look at the most frequently used of these attributes.

button

This is a simple clickable button that doesn’t actually do anything if left to its own devices. It is usually used

along with
JavaScript to implement some sort of custom behavior. Here’s how you create one:

<input name="save-button" type="button" value="Click me"/>

submit

This is a button too. However, unlike button, this has built-in functionality associated with it. This submit

button triggers the browser to gather up and submit all of the form’s data and send it along to its destination.

The destination is the value of the action attribute that was declared on the form element. An important point

here is that only the data within the form that the submit button resides in is sent along to the destination. This

makes perfect sense when you consider that you can have more than one form on your page. Here’s what it

looks like:

<input type="submit" name="submit" value="Register"/>

It is the value attribute that determines the text that appears on the button. The name attribute can be used

as a reference. For example, you might use this in JavaScript code or in the server-side processing logic (such

as a PHP script), once the form is submitted. This attribute applies to all of the form elements and serves the

same purpose in each case.

text

By far the most commonly used input type, the text input creates a single-line box into which the user can enter

text.
Here’s what it looks like:

<input placeholder="First Name" type="text" name="first-name" size="20"/>

In this example, I used the placeholder attribute to create a hint as to the expected value of this field.

Using placeholder can be a very efficient way of exploiting available screen space, as it can be used in lieu of

a label. The size attribute dictates the width of the field. I rarely use this attribute, as I tend to use CSS instead,

which gives much more precision and control. Here’s an example using this approach:

<input placeholder="First Name" type="text" name="first-name" style="width: 220px;"/>

Here, I have used the style attribute to inline a CSS rule and set the width property to 220 pixels. Inlining

the CSS rule like this is good for demonstrations, but, of course, you could (and probably should) use a

dedicated style sheet for all of your CSS rules.

checkbox

If you want your users to respond with a yes or no, a true or false, or some other two state values, checkbox is
the input type that you need. The only possible actions are checking or unchecking the box. Here’s what the
check box looks like:

<input type="checkbox" name="chknewsletter" value="opt-in-newsletter"/>

The value attribute determines the value that is sent to the server. For example, you can set the

value to opt-in-newsletter, and this is the string value that will be sent to the server as the checked

value.
Following is another, almost identical, example. In this case, we have added the checked attribute, so

that the check box will be in its checked state by default.

<input type="checkbox" name="chknewsletter" value="opt-in-newsletter" checked/>

password

The password field is very similar to the standard text input. It looks like this:

<input type="password" name="pin" id="pin">

The password input differs in that the characters entered into it are masked in the browser, so that
prying eyes cannot read what is being entered.

radio

The radio button control is perhaps the trickiest input type. Named after the old-fashioned radio sets,

which used buttons instead of a dial (or a scan function such as we have on modern radios), tuning among

stations was accomplished by using a series of buttons that were pre-tuned to certain stations. Pressing

down on one button caused any other depressed button to pop back up. It is the same with radio buttons on

the Web; that is, you can ―depress,‖ or choose, only one button at any given time.
For this system to work, though, each radio button in the group from which you want your users to

choose must have the same name. In Listing 6-1, you can see that each radio button has been given a name of
"station".

Listing 6-1. A Group of radio Buttons

<div>

<input type="radio" name="station" id="rad1" value="triple-m"/> <label for="rad1">Triple M</label>

</div>

<div>
<input type="radio" name="station" id="rad2" value="today-fm"/> <label for="rad2">Today

FM</label> </div>

<div>
<input type="radio" name="station" id="rad3" value="abc-news"/> <label for="rad3">ABC

News</label> </div>

<div>

<input type="radio" name="station" id="rad4" value="triple-j"/> <label for="rad4">Triple J</label>

</div>
A very important thing to note is that, while the name attribute has the same value in each case, the value

attribute differs. As the user does not actually enter any text into a radio button (that’s clearly impossible),

there must be a way to assign a meaning to each.
Unlike the name attribute, the id attribute should be unique. Here, the label element, through its for

attribute, relates itself to the input it is labeling. We will look at the label element again at the end of this
section.

The textarea Element

The textarea element is similar to the text input, but it allows the user to enter multiple lines of text, as

opposed to a single line of text. This makes it ideal for larger amounts of text. Unlike the input element, a

textarea element has an opening <textarea> and closing </textarea> tag in which only text content is allowed.

<textarea name="description"></textarea>

It’s easy to change the size of a textarea element by making use of the cols and rows attributes, which, as

you might imagine, specify the number of horizontal input lines (rows) and the width of the textarea in terms of
columns.

<textarea name="description" rows="4" cols="50" ></textarea>

The select Element

The select element is a container for a series of option elements. These option elements display in the browser

as a drop-down list. Unless you use the multiple attribute, this control will allow the user to pick just one item

from the list of options. Take a look at Listing 6-2, which shows two select elements, one with the multiple

attribute specified and one without it specified.

Listing 6-2. Two Very Similar select elements, Two Very Different

Outcomes <!-- this renders as a drop down lst -->

<select name="favorite-food" id="favorite-food">
<option>Eggs</option>
<option>Fish</option>
<option>Bread</option>

</select>

<!-- this renders as a all-in-one list -->
<select name="favorite-food" id="favorite-food" multiple >

<option>Eggs</option>
<option>Fish</option>

<option>Bread</option>
</select>

These are close to identical. The only difference is that the second select element uses the multiple

attribute.
Figure 6-1 shows the rendered lists.

Figure 6-1. Lists with and without the multiple attribute

It is common to see the select element set up such that its first option is the user’s prompt. For
example, the select element in Listing 6-3 uses its first option to display ―Choose your favorite food.‖

Listing 6-3. Using the First option Element As a Prompt

<select name="favorite-food" id="favorite-food"> <option

value="">Choose your favorite food</option> <option

value="eggs">I love Eggs!</option> <option

value="fish">Fish is my fave!</option> <option

value="bread">Bread rocks!</option>
</select>

An important point to observe about Listing 6-3 is that it uses the value attribute. If the user were to select

the option ―I love eggs!‖, the value submitted to the server would be ―eggs.‖ The option used as the prompt

has an empty string as its value. This is simply a way to signify the fact that this option isn’t really an actual

choice; it’s merely serving as an instruction to the user.

Model Binding

When we speak about binding, we are really just talking about connecting things in such a way that they

remain in sync with each other. What things are we talking about here? For example, we can bind a model

property called firstName to a text input. This binding would create a special relationship between each,

causing the text input to display the value of the model property, and the model property to store the value

of the text input.
It’s even more than that, however, because it works in both directions and in near real time. Should you

change the value in the text input, the model property will immediately update itself to reflect this new value.

Should you change the value of the model property, the value in the text input will immediately update itself

to display this new value. As this all happens in near real time, changes are visible in the user interface right

away.

How do we set up a binding between a model property, such as firstName, and a text input? Well, it’s
surprisingly easy, thanks to the ngModel directive.

<input type="text" name="firstName" ng-model="firstName"/>

Here, we use the ngModel directive on the input to define a two-way binding. Because we specified

firstName as the value of the ngModel directive, we connected it to the model property of the same name. A

very important aspect of this process is the fact that it all happens against the current scope. In this particular

(and common) scenario,
it would be the scope object used in your controller. When firstName was bound to the text input, it was

actually
$scope.firstName that was bound. As discussed earlier in the book, the scope reference is implicit within
AngularJS expressions.

Let’s look at Listing 6-4 and see some model binding in action. Here is the controller code:

Listing 6-4. Setting Some Model Properties on the Scope

angular.module("myapp", [])
.controller("MyController", function ($scope) {

var person = {
firstName:"Jimmy",
age: 21,
address:{

street: '16 Somewhere Drive',
suburb: 'Port Kennedy',
state: 'Western Australia'

}
}

$scope.person = person;

});

Now let’s look at Listing 6-5, which shows a portion of HTML code that uses this controller and model.

Listing 6-5. ngModel in Action

<div ng-app="myapp">

<div ng-controller="MyController">

<form name="theForm">
<input type="text" name="firstName" ng-

model="person.firstName"/>
 <input type="text" name="firstName"

ng-model="person.address.street"/>
</form>

<p>
First name is: {{person.firstName}}

Street name is: {{person.address.street}}

</p>

</div>
</div>

Listing 6-4 and Listing 6-5 show the general principles of binding in action. Pay special attention to the

fact that we bound to a model property with a nested object (the person object’s address property, which is
itself an object). Both text inputs properly reflect this hierarchy, as shown in bold in the code listing.

More formally, what I have been discussing in this section is known as two-way binding. This distinction

is made because AngularJS also supports one-way binding. You have already used one-way binding, and it is
used in Listing 6-5. Here is the portion of code in which the one-way binding appears:

First name is: {{person.firstName}}

Street name is: {{person.address.street}}

We have already seen this type of binding, though, at the time, we didn’t actually use the term one-way

binding. What exactly do I mean by one-way binding? An easy way to understand this is by considering that a

user cannot change a value that is output as plain text content. This is in stark contrast to values that are output

to text inputs and other editable form elements. AngularJS has less work to do with the plain text output, as it

does not have to manage the relationship in both directions. Consequently, this is called a one-way binding.

AngularJS will not waste resources monitoring static content for changes.
In fact, as an alternative to using the double curly brace syntax, you can instead use the ngBind

directive. The preceding code snippet, rewritten with ngBind, would look like this:

First name is:

Street name is:

The double-curly-brace approach is more naturally readable, and it requires less typing than the ngBind
approach. However, ngBind can be useful, as it behaves like the ngCloak directive, discussed previously in
the last chapter, in that content is only visible once AngularJS has loaded.

Here’s a good thing to know about how AngularJS treats bindings in the absence of an associated model

property: if you refer to a model property in an ngModel directive and it doesn’t actually exist, AngularJS will

create it for you. Review Listing 6-6 and Listing 6-7, and then we will have a quick discussion about what this

reveals concerning the binding process.

Listing 6-6. Implict Model Binding—HTML Code

<div ng-app="myapp" ng-controller="MyController">

<form name="theForm">
<div>

<input type="text" name="firstName" ng-model="firstName">

<input type="button" value="Show first name" ng-

click="showFirstName()"/> </div>

</form>
</div>

Here is the associated controller code:

Listing 6-7. Implict Model Binding—Controller Code

angular.module("myapp", [])
.controller("MyController", function ($scope) {

$scope.showFirstName = function(){
alert("Name is: " + $scope.firstName);

}

});

Unlike in Listing 6-4 and Listing 6-5, the controller shown in Listing 6-7 does not create a model for our

view template to use. However, as you can see in Listing 6-6, we clearly refer to a model property called

firstName in the ngModel directive. Furthermore, we also show its value to the user when the Show first

name button is pressed. How and when is the firstName model property created?
AngularJS created this model property for us when it came across the ngModel directive on the text

input element. More accurately, it created it once it encountered a value to which it could bind. When the

page first loads, you can click the Show first name button, and you will get the result shown in Figure 6-2.

Figure 6-2. An empty text input—nothing to bind to

Perhaps, as you might expect, the value of firstName is displayed as undefined. Currently, there is no such
model property, so this makes perfect sense. Now let’s enter some text into the text input (see Figure 6-3).

Figure 6-3. Text has been entered into the text input

This time, the value of firstName is ―Jimmy.‖ As AngularJS is working in real time, once the text was

input, it was able to create the binding. It’s good to be aware of this behavior. Nonetheless, the fact that it can

result in values such as undefined means that you should code defensively. This is demonstrated in Listing 6-8.

Listing 6-8. Coding Defensively

$scope.showFirstName = function(){

if(angular.isDefined($scope.firstName)){
alert("Name is: " + $scope.firstName);

}else{
alert("Name is empty, please enter a value");

}

}

In Listing 6-8, we first test to see if the model property exists, and we only display it if it does. This listing

uses the handy angular.isDefined method. In this version of the showFirstName function, the result of

angular. isDefined($scope.firstName) will be true, even if you were to backspace and remove all of the text

from the First name field. It will output an empty string as the value, although this is quite different from an

undefined value. AngularJS has previously found a value in this text input; consequently, the binding and

associated variable has been created and remains in play.

With this knowledge of binding under our belts, let’s now move on to using it to create forms. More
specifically, we will create a small but, I hope, enlightening user registration form.

AngularJS Forms

With a discussion of standard forms and model binding behind us, we are in good shape to tackle AngularJS

forms. Of course, AngularJS forms are really just regular forms enhanced with AngularJS goodness. In this

section, we will build a user registration form from scratch and employ it to build up our AngularJS skills.
We will start off simple and enhance it along the way. Let’s work with some very basic requirements for this

form.
These requirements are shown in Table 6-1.

Table 6-1. User Registration Form Requirements

Field Name Data Type Notes

First name Text Required

Last name Text Required

E-mail address Text Required

 Must be formatted as an e-mail

 Address

Where did you hear about

us?

Would you like to subscribe
to our quarterly newsletter?

Register

Text

One choice from a set of options:
Television, Radio, Social Media, and
Other

Yes or no

Text

Must match the set of questions

asked by Marketing across the
various communication

channels

Must be unchecked by default

The text that appears on the
submit button

It’s fairly clear from these requirements, in general terms, at least, what we will need to build, in terms of a

user interface. Let’s take a look at some first-draft HTML code (Listing 6-9) that reflects something close to
what we are targeting.

Listing 6-9. First-Draft HTML Code for a User Registration Form

<div ng-app="myapp" ng-controller="MyController">

<form name="registrationForm">

<input type="text" placeholder="First Name" name="firstName" ng-model="person.firstName"

required>

<input type="text" placeholder="Last Name" name="lastName" ng-model="person.lastName"

required>

<input type="email" placeholder="Email" name="email" ng-model="person.email"

required>

<select name="channels" ng-model="person.channels"

<option value="">Where did you hear about

us?</option>
</select>

<input ng-model="person.newsletterOptIn" type="checkbox" name="newsletterOptIn"
id="newsletterOptIn" value="newsletterOptIn"/>

<label for="newsletterOptIn">Recieve monthly
newsletter</label>

<input type="submit" value="Register">

</form>
</div>

For the most part, this is straightforward HTML. The two most important things to note are the existence

of the ngModel directive on each of the form elements and the fact that we have given the form a name.

Giving the form a name means that we can access some interesting AngularJS features, which I will discuss

shortly. This form does not yet meet the requirements, but we are well on the way. Figure 6-4 reveals how the

form looks right now.

Figure 6-4. First-draft user registration form

It’s far from perfect, but we are on the right track. Let’s work our way through each of the fields, starting

with the First name and Last name fields (which are the same in terms of the requirements). Take note that both

of these fields make use of the required attribute. This attribute, which is an HTML5 attribute, not an

AngularJS construct, tells browsers to make sure that a value is entered before allowing the form to be

submitted. I will talk more about this in the next section, which covers validation in more detail.
Let’s move along to the Email field. This input element has a type of "email". This is very similar to a

text input, but it is specifically used for capturing e-mail addresses.

<input type="email" placeholder="Email" name="email" ng-model="person.email" required>
This is not an AngularJS feature; it is part of the HTML5 specification. Compliant browsers will consider

this field invalid if it does not contain a properly formatted e-mail address. I will touch on this point again in

the upcoming validation section.
The Marketing team has asked us to include some research questions in our registration form. It

wants to know among which set of communication channels the user has found our company. So far, we

have created the appropriate form element, shown again in the code snippet that follows. However, we

currently present just one option: the prompt for the user.

<select name="channels" ng-model="person.channels">

<option value="">Where did you hear about

us?</option>
</select>

This select element needs some AngularJS work, because the select element itself is only half the story.
We have to turn to the controller, shown in Listing 6-10, whereby we can create some data for the list of

options.

Listing 6-10. The Controller Code Driving the select Element

angular.module("myapp", [])
.controller("MyController", function ($scope) {

$scope.person = {};

$scope.person.channels = [
{ value: "television", label: "Television" },
{ value: "radio", label: "Radio" },
{ value: "social-media", label: "Social Media"},
{ value: "other", label: "Other"}

];

});

The controller, through the scope object, is making the person object available to our view template.

More specifically, because our select element needs this data, it adds an array of objects to the model

property we use on the select element’s ngModel directive: person.channels. Another step is required,

because we want the select element to be populated with a set of option elements, based on the model

property we just added to the scope above. For this step, we use the ngOptions directive. Listing 6-11 shows

the revised select element.

Listing 6-11. Using the ngOptions Directive to Generate Options

<select name="channels" ng-model="person.channels" ng-

options="obj.value as obj.label for obj in person.channels"> option

value="">Where did you hear about us?</option> </select>

The ngOptions directive expects a comprehension expression. This expression can seem a little

intimidating when you first encounter it, but we can break it down. It is essentially a query that we use to tell

AngularJS how to map our model property, the person.channels array, in this case, onto a set of HTML

options. This array contains a set of objects, and AngularJS would like to know which properties of this set

should become the option element’s value and which should become the content visible to our end user. Here

is the expression again:

obj.value as obj.label for obj in person.channels
It isn’t a particularly intuitive syntax, but we can make out the key components. In plain English, this

would read something like the following:

Use the value property on the option elements value attribute, and use the label property as the text
displayed within the option element. Oh, and by the way, I am referring to the objects contained
within the person.channels array.

While we used the ngOptions directive to generate the option elements, we added the Where did you hear
about us? option manually. Of course, you could add an extra object to the person.channels array

representing this option too, but I prefer this approach, as it better reflects our ambitions about keeping things

in the right place. This option element is just an instruction to the user, and it exists only to serve as part of our

user interface; it isn’t actually part of our model.

Next up, we have the ―Would you like to subscribe to our quarterly newsletter?‖ question. As this requires

a yes or no response, the checkbox element is well-suited to our needs. The only requirement that we have to

address here is that the Marketing team wants this check box to be unchecked by default. We automatically

meet this requirement, because check boxes are unchecked by default. However, we will set this explicitly

through the binding we have set up on the check box. Here is the check box again:

<input ng-model="person.newsletterOptIn" type="checkbox" name="newsletterOptIn"
id="newsletterOptIn" value="newsletterOptIn"/>

In our controller, we simply set the person.newsletterOptIn property to false. As this is used as a binding,

the check box, fully aware of the need to check and uncheck itself in response to true and false values,

automatically takes on the correct value. Had we wanted the check box to appear checked, we could have set

this value to true instead, which would have caused the check box to appear checked. Of course, it is not a

good practice to put the onus on the user to opt out, so we won’t do that. Listing 6-12 shows this in action.

Listing 6-12. The Controller Code Driving the Check Box

angular.module("myapp", [])
.controller("MyController", function ($scope) {

$scope.person = {};
$scope.person.newsletterOptIn = false;

$scope.person.channels = [
{ value: "television", label: "Television" },
{ value: "radio", label: "Radio" },
{ value: "social-media", label: "Social Media"},
{ value: "other", label: "Other"}

];

});

This approach is not quite as easy as adding the checked attribute to the HTML code, but it’s not too

much extra effort. I chose this approach because it better showcases bindings in action. However, it also has

benefits in other scenarios, such as when you have to populate forms with existing data (as with forms that

users can come back and update at a later time).
The last form element is the submit button. The only thing we have done so far is to change its value to

―register‖, as opposed to leaving it with the default ―Submit‖ value. The Marketing team has yet to tell us how

we
should handle this data with regard to what should happen when a user registers, but I suspect it will have filled

us
in on this just in time for the next chapter. For now, though, we can attach a submit handler to our form, so that

it is
ready to handle this pending requirement. Here is the revised form element:

<form name="registrationForm" ng-submit="person.register()">

By using the ngSubmit directive, we have told the form to use a method on our person object (the

register() method) when the user submits the form. The revised controller code is shown in Listing 6-13.

Listing 6-13. Adding the submit Handler

angular.module("myapp", [])
.controller("MyController", function ($scope) {

$scope.person = {};
$scope.person.newsletterOptIn = false;

$scope.person.channels = [

{ value: "television", label: "Television" },
{ value: "radio", label: "Radio" },
{ value: "social-media", label: "Social Media"},
{ value: "other", label: "Other"}

];

$scope.person.register = function () {
<!-- pending implementation -->

}

});

We are closer to fulfilling the requirements, but there is still work to be done. Before we move on to the
topic of validation, it’s time for a checkpoint. Listing 6-14 shows the HTML code, and Listing 6-15 shows the

slightly refactored JavaScript code.

Listing 6-14. The Form Code

<div ng-app="myapp" ng-controller="MyController">

<form name="registrationForm" ng-submit="person.register()">

<input type="text" placeholder="First Name" name="firstName" ng-model="person.firstName"

required>

<input type="text" placeholder="Last Name" name="lastName" ng-model="person.lastName"

required>

<input type="email" placeholder="Email" name="email" ng-model="person.email"

required>

<select name="level" ng-model="person.levels" ng-options="obj.label as

obj.value for obj in person.channels">
<option value="">Where did you hear about us?</option>

</select>

<input ng-model="person.newsletterOptIn" type="checkbox"

name="newsletterOptIn" id="newsletterOptIn" value="newsletterOptIn"/>
<label for="newsletterOptIn">Recieve monthly

newsletter</label>

<input type="submit" value="Register" ng-click="person.register()">

</form>
</div>

The only change in the JavaScript code in Listing 6-15 is that the person object is constructed first

and then assigned to the $scope as the last step. The end result is the same, but this is much more readable.

Listing 6-15. The AngularJS Code

angular.module("myapp", [])
.controller("MyController", function ($scope) {

var person = {};
person.newsletterOptIn = false;
person.channels = [

{ value: "television", label: "Television" },
{ value: "radio", label: "Radio" },

{ value: "social-media", label: "Social Media"},
{ value: "other", label: "Other"}

];
person.register = function () {

<!-- pending implementation -->
}

});

Validating Forms

We usually want to validate at least some of the data that users enter into our forms. While it is true that

validation can and should be done on the server, and that server-side processes are usually capable of handling

much more complex validation rules, we still have to perform first-line-of-defense validation in the web

browser. With JavaScript validation, we can do a lot of the validation up front, before even considering sending

it along to the server. This way, we preserve bandwidth and reduce the load placed on our web servers. The

fact that JavaScript validation provides instant feedback is a big plus too.
Using AngularJS, it isn’t difficult or terribly time-consuming to implement JavaScript validation. The

first step has already been taken with our registration form: when we gave the form a name, we enabled
access to AngularJS validation features.

Before we look at validation as it applies to specific fields, let’s look at what AngularJS does for us in

regard to the form as a whole. At this form-wide level, AngularJS will give us answers to some important
questions: Has the user started entering any data into the form yet? Is the form as a whole in a valid state? and

so on.
Table 6-2. Built-in Form-Level Properties

Property Name Description

$pristine True, if user has not yet interacted with the form

$dirty True, if user has already interacted with the form

$valid

True, if all of the containing forms and form elements are

valid

$invalid

True, if at least one containing form element or form is

invalid

We also have access to some very handy CSS style hooks. As the form changes state, such as when it

moves from valid to invalid, AngularJS will dynamically add and remove CSS classes to reflect the current

state. You can create your own set of CSS rules for these classes, thereby styling the form as you see fit for

each state. These classes are outlined in Table 6-3. The style hooks and the built-in form properties will make

more sense when we see them in action.

Table 6-3. Dynamically Managed Validation Classes

Class Description

ng-valid Set, if the form is valid

ng-invalid Set, if the form is invalid

ng-pristine Set if the form is pristine

ng-dirty Set, if the form is dirty

ng-submitted Set, if the form was submitted

If you have already worked with the HTML5 specification, you might be pleased to hear that AngularJS

respects attributes such as type and required. It also adds some directives of its own to support forms and

form validation further. Generally, one of the first steps you take when using AngularJS validation is the

addition of the novalidate attribute on your form element, as shown here:

<form name="registrationForm" ng-submit="person.register()" novalidate>

Strange that we should use the novalidate attribute when we actually want to validate. Keep in mind that

the novalidate attribute is not an AngularJS directive; it is a standard HTML attribute that is used to prevent

built-in browser validation. The reason we use it is because we want AngularJS to validate our form. Taking

the built-in browser behavior out of the equation is the best way to remedy the problems that would otherwise

occur. We still get to use the same approach, only with AngularJS running the show instead of the browser.

As we have given our form a name and we have added the novalidation attribute, it is now primed for

validation. Let’s look at validation for the First name and Last name fields. These won’t be too challenging, as

the rule is simply that they are required. The two things that we must do are provide the validation itself and

the feedback to the user, if the validation fails. Examine Listing 6-16.

Listing 6-16. Validating Required Fields and Showing Feedback to the User

<input type="text" placeholder="First Name" name="firstName" ng-model="person.firstName"

required> Please enter a value for First name

<input type="text" placeholder="Last Name" name="lastName" ng-model="person.lastName"

required> Please enter a value for Last name

The validation is straightforward; we simply add a required attribute to our input elements. With the

addition of this attribute, AngularJS will insist on a value in each of these fields before it will consider the form

valid. However, it insists rather quietly, so it is up to us to tell the user if things went wrong and how to fix

them. The approach we apply here is to use span elements containing the validation error messages. We want

to keep these hidden until we have to show them. We achieve this through the ngShow directive. Let’s focus

on the span we added for the First name field.

Please enter a value for First name

As you may recall from our coverage of ngShow in the last chapter, it expects an expression that

evaluates to a Boolean value. Let’s turn to the controller code’s register method in Listing 6-17, as this

will show us how the firstNameInvalid variable is manipulated to trigger the showing and hiding of the

validation message.

Listing 6-17. The Registration Method with Some Validation in Place

$scope.register = function () {

$scope.firstNameInvalid = false;
$scope.lastNameInvalid = false;

if(!$scope.registrationForm.firstName.$valid){
$scope.firstNameInvalid = true;

}

if(!$scope.registrationForm.lastName.$valid){
$scope.lastNameInvalid = true;

}

if($scope.registrationForm.$valid){
<!-- pending implementation -->

}

}

When the document first loads, both firstNameInvalid and lastNameInvalid evaluate to false.

Consequently, the ngShow directives will keep the span elements, and therefore the validation messages,

hidden. When the user presses the submit button, we make use of the fact that AngularJS can tell us, on a

field-by-field basis, whether or not an input is valid. In the case of the First name field, which we named

firstName, in the form which we named registrationForm, we can use

$scope.registrationForm.firstName.$valid to see if this field is currently valid. As you might expect, this

scope.formName.fieldName.$property format applies to the Last name field too.

Both of the conditional statements in the register() method work the same way; they each check to see if

these fields are not currently valid. If indeed they are not, then the firstNameInvalid and lastNameInvalid

variables are set to true. This will cause the ngShow directive to show the validation error messages.
Moving along to the e-mail address input, the requirement is also that the field is required. In this case,

it must also be a value that is a properly formatted e-mail address. This is easy enough to achieve using the
HTML5-based approach. Study the following input element, which will achieve this:

<input type="email" placeholder="Email" name="email" ng-model="person.email" required>

Let’s use two more form-level properties that we touched on in Table 6-2. While this is a slightly
contrived example, it does show off the use $pristine and $dirty.

At the top of our form, we will place two div elements; both of which use an ngShow directive. The $dirty

property tells us if there has been some interaction with the form. It is true if at least some data has been

entered. The $pristine property is the opposite. It tells us if there has been no interaction with the form. Only

one of these div elements will be visible at any given time; that is, a form cannot possibly be in both states.

<div ng-show="registrationForm.$pristine">Form input has not yet started</div>

<div ng-show="registrationForm.$dirty">Form input has started</div>

Next, we will add a div element underneath our form. This div element contains the ―Thank you‖

message that we want users to see once they have successfully completed the form. It, too, uses an ngShow

directive. In this case, we rely on the value of the doShow variable, a variable that we set within the

register() method of our controller, to determine whether or not to show the ―Thank you‖ message.

<div ng-show="doShow">
Thank you for taking the time to register!

</div>

I will show the complete code listing soon. Just one more thing that we should address before we finish
up. At the moment, the form doesn’t look too good. As Figure 6-4 shows, it’s looking a little cramped and not

very presentable. We will turn it into something a little better, as shown in Figure 6-5.

of the CSS, which is shown in Listing 6-18, relates to the look and feel of the form. However, we have

also used a few of the AngularJS style hooks that pointed out in Table 6-3. Here is the CSS code with the

AngularJS style hooks shown in bold.

Listing 6-18. The CSS, Including the AngularJS-Style Hooks Behind the Form

body {

font: normal 16px/1.4 Georgia;
}

input:not([type='checkbox']), select {

width: 250px;
}

select, input {

padding: 5px;
margin-top: 12px;
font-family: inherit;

}

input[type='submit'] {

width: 264px;
}

form span {

color: red;
}

input[name='email'].ng-dirty.ng-invalid {

color: red;
}

input[name='email'].ng-dirty.ng-valid {
color: green;

}

It isn’t readily apparent what these last two CSS rules, the style hooks, accomplish, beyond the fact that

they both set the CSS color property, one to red and the other to green. Figure 6-6 sheds some light on the

matter. When the user begins to type, the input text appears in red, indicating that the e-mail address is not yet

valid. Once the e-mail address is recognized as valid, the text becomes green. Figure 6-6 shows how this looks

in both states.

Figure 6-6. E-mail input, with visual real-time validation feedback

What is particularly interesting about this feature is that it only requires the addition of some very basic CSS.
As indicated earlier, AngularJS will dynamically add CSS classes as the form changes from one state to

another. In this case, when the page first loads, the e-mail input element has a few classes set on it. One of
them is the ngValid class. Here is how this particular input is enhanced by AngularJS upon page load:

<input type="email" placeholder="Email" name="email" ng-model="person.email"

required="" class="ng-pristine ng-invalid ng-invalid-required ng-valid-email">

Pay special attention to the two bolded classes, ng-pristine and ng-invalid. The former was added

because this input has not yet been touched; it is in pristine condition. The latter was added because the

field is currently invalid. Once the user starts typing his or her e-mail address, AngularJS will update this

list of classes on the fly. At the very first keystroke, the input is no longer pristine. As the following code

snippet shows, it is now dirty.

<input type="email" placeholder="Email" name="email" ng-model="person.email"

required="" class="ng-dirty ng-invalid ng-invalid-required ng-valid-email">

At this point, our input[name='email'].ng-dirty.ng-invalid rule kicks in, and the text becomes red. It

remains red until such time as the e-mail address becomes valid. When it does become valid, the list of CSS

classes is again revised by AngularJS.

<input type="email" placeholder="Email" name="email" ng-model="person.email"

required="" class="ng-dirty ng-valid-required ng-valid ng-valid-email">
This revision means that our input[name='email'].ng-dirty.ng-valid rule kicks in. Consequently, the text

becomes green. This is quite a powerful technique, because once you know which classes AngularJS is adding

and when, you can use these classes as hooks for just about anything you like. Of course, just because you can

doesn’t mean that you should! There was a little bit of legwork involved in building the validation and

validation feedback code into our registration form, but it wasn’t overly complicated. This has been a

relatively long chapter, and I recommend that you load up this code in your web browser and favorite IDE; it

is well worth doing some experimentation with it.

Listing 6-19. Registration Form—the HTML Code

<div ng-app="myapp" ng-controller="MyController">

<div ng-show="registrationForm.$pristine">Form input has not yet started</div>

<div ng-show="registrationForm.$dirty">Form input has started</div>

<form name="registrationForm" ng-submit="register()" novalidate>

<input type="text" placeholder="First Name" name="firstName" ng-model="person.firstName"

required />
Please enter a value for First name

<input type="text" placeholder="Last Name" name="lastName" ng-model="person.lastName"

required />
Please enter a value for Last name

<input type="email" placeholder="Email" name="email" ng-model="person.email" required

/>
A valid email address is required

<select name="research" ng-model="person.levels"
ng-options="obj.label as obj.value for obj in person.channels" required>

<option value="">Where did you hear about us?</option>
</select>

Please tell us where you heard about us

<input ng-model="person.newsletterOptIn" type="checkbox" name="newsletterOptIn"
id="newsletterOptIn" value="newsletterOptIn"/>

<label for="newsletterOptIn">Recieve monthly newsletter</label>

<input type="submit" value="Register"/>

</form>

<div ng-show="doShow">
Thank you for taking the time to register!

</div>

</div>

Here is the associated controller code:

Listing 6-20. Regsitration Form—the JavaScript Code

angular.module("myapp", [])
.controller("MyController", function ($scope) {

$scope.person = {};
$scope.person.newsletterOptIn = false;

$scope.person.channels = [
{ value: "television", label: "Television" },
{ value: "radio", label: "Radio" },
{ value: "social-media", label: "Social Media"},
{ value: "other", label: "Other"}

];

$scope.register = function () {

$scope.firstNameInvalid = false;
$scope.lastNameInvalid = false;
$scope.emailInvalid = false;

if(!$scope.registrationForm.firstName.$valid){
$scope.firstNameInvalid = true;

}

if(!$scope.registrationForm.lastName.$valid){
$scope.lastNameInvalid = true;

}

if(!$scope.registrationForm.email.$valid){
$scope.emailInvalid = true;

}

if(!$scope.registrationForm.research.$valid){
$scope.researchInvalid = true;

}

if($scope.registrationForm.$valid){
<!-- pending implementation -->
$scope.doShow = true;

}

}

});

CHAPTER 6

Services and Server Com munication

In the last chapter, we looked at HTML forms as a means of presenting a user interface for gathering a set of

user registration data. However, we didn’t look at the next step in the process, that is, sending that data along

to a back-end server for processing. In this chapter, we will achieve this by using Angular services. As

Angular services are about much more than sending data to servers, we will first look at them at a more

general level.
The term service is rather overused in the development world, so what do we mean when we talk about

Angular services? A good way to think about an Angular service is as a set of tightly related functions,

managed by the Angular framework, which are made readily available for use across an application. For

example, you might use something as common as a company-wide data service, which enables any part of

your application to send and retrieve data to and from a corporate database. A marketing-and-communications-

asset library, for example, which lets you locate and retrieve images and image metadata, is much more

specific. When speaking of Angular services, however, examples such as these could fool anyone into thinking

that services are all about server communication and data access, but they are not. In Angular, getting a

reference to the browser’s window object can also be achieved by using a service: the built-in $window

service. You can even create animations by using the built-in $animate service.

If we wanted to, we could create our own JavaScript object and give it a set of methods that performs a

range of related tasks. We could call upon this object whenever we needed it and, perhaps naively, describe it

as a service. This seems to fit closely the description I just gave you of an Angular service, but not quite. So,

what is it about an Angular service that makes it so special? While Angular ships with a set of very useful

services, some of which we will look at shortly, the answer to this question lies in the fact that it provides us

with a framework within which services can be easily managed. I say easily managed, because without this

framework support, it wouldn’t be a trivial task.

If you were to tackle a task like this on your own, and you were serious about it, you would (at a
minimum) have to ask and answer the following questions:

 When and where is the right place to instantiate my service?

 What is the best way to manage service dependencies across my application?

 What is the best approach for making sure that my services can be unit-tested
and configurable?

 How should I handle persisting and sharing services between my controllers?

Using Services

As we mentioned before, Angular ships with a set of useful built-in services. We won’t look at all of them in
this chapter, but we will look at a few; just enough to get a sense of what is offered and how to put them into
action.

The $window Service

The $window service is essentially a reference to the browser’s window object. Access to the web browser’s

window object is globally available in JavaScript using the built-in window reference, but it is generally

considered best practice to avoid it when using Angular, because it can cause testability issues. If instead we

refer to it through the $window service, we keep our options open. For example, if we want to test our service

in a non-browser context in which the browser’s window object does not exist, we can more easily switch the

underlying service provider to one that uses an alternate implementation, one which has all of the same

properties and methods as the original.

Unfortunately, the use of service providers and advanced testing techniques is not covered in this book,

but the real takeaway here is that, by using a service, we are creating an abstraction that shields us from being

intimately tied to a specific implementation. The service simply does what we ask it to do, and users of the

service don’t have to worry too much about how it does this or even if it changes how it does this.
If you look through Listing 7-1, you will see that we access the $window service through the controller

method’s anonymous function. Here, we specify $scope as the first argument, as we have done on a number

of occasions before, and then we ask for the $window service by specifying it here too.

Listing 7-1. The $window Service

<!DOCTYPE html >
<html ng-app="myapp">
<head>

<title>Angular Services</title>
<script src="js/angular.min.js"></script>
<script>

var module = angular.module('myapp', []);

module.controller("MyController", function ($scope, $window) {

$scope.winWidth = $window.innerWidth;
});

</script>
</head>
<body ng-controller="MyController">

<p>Window width: {{winWidth}}px</p>
</body>
</html>

An important point here is that we didn’t actually instantiate this service ourselves. The Angular

dependency management sub-subsystem took care of that for us behind the scenes. For now, though, it is

enough to know that asking for a service in this way, as opposed to you declaring and instantiating it yourself

within your controller code, is a major benefit. That being said, you will get a little more insight into the

mechanism at play here when we create our own service in the next section.

The idea of the window object as a service might seem a little odd at first, but it makes perfect sense. It

contains a set of related functions and properties that we want to be readily available across our application.

That’s a service! Additionally, because it is a service, we don’t have to be too concerned about how it goes

about its work or how we might work with it in other contexts. While it may be early days in your Angular

career right now, professional-grade testing is one such context you are likely to encounter in the future.

The $location Service

Based on the window.location object, the $location service parses the URL in the browser address bar and

makes it available to your application. If you make changes to the URL in the address bar, they are reflected

in the $location service, and if you make changes to the $location service, they are reflected in the browser

address bar.
At first glance, it might seem like the $location service is merely a reference to the browser’s

window.location object, but it is a little more than this. It has tight integration with the Angular framework’s

life-cycle events, and it also has seamless support for the HTML5 history API (with automatic fallback support

for older browsers). As a general rule, whenever your application needs to respond to a change in the current

URL, or you want to change the current URL in the browser, this is the service to use.

■ Caution The $location service will not cause a full-page reload when the browser URL is changed. In

order to achieve this, you should use the $window.location.href property.

Listing 7-2 is a basic example of the $location service in action. Here, we use it to display the current
URL and a list of URL parts.

Listing 7-2. Using the $location Service

<!DOCTYPE html >
<html ng-app="myapp">
<head>

<title>Angular Services</title>
<script src="js/angular.min.js"></script>
<script>

var module = angular.module('myapp', []);

module.controller("MyController", function ($scope, $location) {
$scope.url = $location.absUrl();
$scope.protocol = $location.protocol();
$scope.host = $location.host();
$scope.port = $location.port();

});
</script>

</head>

<body ng-controller="MyController">
<p>The URL is: {{url}}</p>

{{protocol}}
{{host}}
{{port}}

</body>
</html>

As we did with the $window service, we simply asked for the $location service by adding it as a

parameter to our controller’s anonymous function. In the next chapter, we look at how better to organize our

HTML views, and you will see how the $location service plays a very important role in this context.

Why Use Services?

One thing that might have struck you as you read through these examples is that these particular services don’t

really add much in terms of functionality. The $window service, for example, doesn’t appear to add much

above and beyond what the regular JavaScript window object has to offer. While some Angular services, such

as the $http and $animation services (which we will look at in later chapters), are very rich in functionality,

what I want to convey in this section is that services are a core aspect of Angular and, regardless of what

functionality a given service may offer, the way in which we access a service is consistent and offers important

architectural benefits.
The $window service offers us the benefit of abstraction; we are not tied specifically to the browser’s

window
object. So, in more advanced scenarios, we can actually switch it to use some other implementation. The

$location service offers similar benefits, and it is also designed to work very well with the Angular routing

framework (which we will also be looking at in a later chapter).
Angular services are an important part of how Angular applications are built, because they are a well-

architected approach to managing dependencies, and they go a long way toward making applications much

more robust.

Creating Services

Angular services provide a mechanism for keeping data around for the lifetime of an application and for

communicating across controllers in a consistent manner. As services are implemented as singletons, which

are objects that are instantiated only once per application, you interact with the same instance of a service

every time you use it. Angular is also performance-conscious, so it will create a service only when you need it

and not a moment before. This is all great news, but it does mean that we must learn the ground rules when we

create our own services.
We’ll start off nice and easy with Listing 7-4. All that this service will do is to tell us the current

date and the current time, but it’s just enough to get an idea of how the plumbing works.

Listing 7-4. A Basic Angular Service

<!DOCTYPE html >
<html ng-app="myapp">
<head>

<title>Angular Services</title>
<script src="js/angular.min.js"></script>
<script>

var module = angular.module('myapp', []);

module.factory('dateTimeService', function () {

var dateTimeSvc = {};
dateTimeSvc.getDate = function () {

return new Date().toDateString();
}

dateTimeSvc.getTime = function () {
return new Date().toTimeString();

}

return dateTimeSvc;

}).controller("MyController", function ($scope, dateTimeService) {

$scope.theDate = dateTimeService.getDate();
$scope.theTime = dateTimeService.getTime();

});
</script>

</head>
<body ng-controller="MyController">

<p>{{theDate}}</p>
<p>{{theTime}}</p>

</body>
</html>

In Listing 7-4, you can see that we use the factory method on our module. This method takes two

arguments, the first of which is the name of our service. We named this service dateTimeService. The second

argument is the factory function, which returns an object. This object is known as the service object, and it

represents the service that you will ultimately use in your application.
When the application first needs to use this service, the framework will call the factory function. In this

example, the service object that it creates and returns is called dateTimeSvc, and it is this object that is used

whenever the service is needed again. In other words, this service object, once created, is common to the

entire application. This is a very important point, because it means that changes made to the state of this object

remain in play throughout the lifetime of the application.
As the primary purpose of our factory function is to create an object with our service’s functionality, we

busy ourselves doing just that. We set up an empty dateTimeSvc object, and then we attach to it the two

service methods: getDate() and getTime(). We finish by specifying dateTimeSvc as the return value.
With the service in place, it’s time to turn our attention to our controller, so that we can find out how to

make use of it. The main thing to note about the controller function is that its second argument, the anonymous

function, asks for the dateTimeService in exactly the same way that we have already seen when looking at the

built-in services. As we registered our service using the name dateTimeService, Angular has no problem

resolving this dependency for us.
Figure 7-1 shows the output of Listing 7-4. The result is simply two paragraphs containing the return

values of the calls we made on our service.

Figure 7-1. The dateTimeService in action.

 it’s a fairly bare-bones implementation of a service, but it does cover the basics of service creation. We will

see these same principles and steps applied again shortly, but first, we will take a brief detour to look at a

related aspect of our upcoming registration form submission task: the Promises API.

Promises

The JavaScript Promises API is an emerging standard, which has been implemented in major browsers. It’s a

relatively deep topic, but fortunately we don’t have to dig very deep in order to start using it. Essentially, a

promise represents a value that may not be available yet, but one that will be resolved at some point in future.

This value is usually the outcome of an asynchronous task such as an Ajax call to a remote server, for instance,

the Ajax call we will use to process our registration form data. Just like those we make to each other and to

ourselves, a promise can exist in different states. To start, a promise is in a pending state. That is to say, a

promise has been made, but that’s about it.

At some future point, it will become either a promise that has been kept or a promise that has been broken.
In the Promises API, we refer to the former as a fulfilled promise and the latter as a rejected promise.

The general idea is that you create callback functions and attach them to the different possible
states of a promise. Figure 7-2 represents the general concept.

Figure 7-2. The role of a promise

The unfinished work represents the back-end processing and network communication that will take

place once the user clicks our Register button. Both of these are processes that will take some time, but they

will result in an outcome of some kind eventually. In the meantime, we have the promise, an object that

represents this as yet unknown value. Furthermore, we have the ability to respond to the states of the

promise, using callback functions.

The Promises API is very sophisticated, and it aims to improve on the way this kind of work was managed

in the past. One interesting aspect of the API is the fact that you combine multiple promises into one larger

promise. This is conceptually like promising your children a trip to the zoo, a toy from the toy store, and then

some ice cream on the way home. With promises, you can write very clean and readable code that says, in

essence, ―When all of these things have happened, do this other thing.‖ We won’t get quite as involved as that

in this book, but I do encourage you to dig deeper, if you plan to write a lot of potentially unwieldy

asynchronous JavaScript code. This is all a little abstract at the moment, but we are now ready to move on and

look at server communication.

Server Communication

While we don’t have to concern ourselves too much with the back-end process that manages the incoming data,
we do have to know how to transmit that data across the network. For this task, we are going to use the

Angular $http service. This service allows you to communicate with a web server via the browser’s

XMLHttpRequest object. If you have a jQuery background, this service is similar to the jQuery Ajax method.
Take a look at Listing 7-5, some of which may make sense already, given our coverage of

promises in the last section.

Listing 7-5. A First Look at the $http Service

var promise = $http({method: 'POST', url: 'memberservices/register', data: theData});

promise.success(function (data, status, headers, config, statusText) {
// this callback will be called asynchronously
// when the response is available

});

promise.error(function (data, status, headers, config, statusText) {
// called asynchronously if an error occurs
// or server returns response with an error status.

});

As Listing 7-5 shows, the $http service is a function that takes a single argument, a configuration object.

While the configuration object lets you configure many different options, we keep it fairly simple here. We

provide an HTTP endpoint via its url property, and we use the HTTP post method via the method property. We

also use the data property to pass in the data that we want to send along to the web server. In many cases, this

is all that the $http service needs in order to do its job. However, by using the configuration object, it is

possible to configure a wide range of HTTP options as and when you need to do so.
We capture the return value of the $http service, a promise object, in a variable named promise. As a

promise object is a representation of an event that can potentially have different outcomes, we use its

success and error methods to cater to either possibility. Both of these methods accept callback functions as

arguments, and each of these functions has the same signature.

function(data, status, headers, config, statusText) { }

The callback function arguments are outlined in Table 7-1. However, we will mainly be concerned with

the first two, data and status, both of which we will see in action shortly.

Table 7-1. The Arguments Provided to the Success and Error Functions

Name Type Description

data string|Object The response body transformed with the transform functions

status Number HTTP status code of the response

headers function([headerName]) Header getter function

config Object The configuration object that was used to generate the request

statusText String HTTP status text of the response

Let’s take the $http service and use it within our own service, a service we will call

memberDataStoreService. We will use this new service to handle our registration form data, but this service

could go on to perform other membership-related tasks, such as handling logins and the ability to change

passwords. We will keep it simple here, though, and focus only on the registration. Take a look at Listing 7-

6.

Listing 7-6. The memberDataStoreService Service

var module = angular.module('myapp', []);

module.factory('memberDataStoreService', function ($http) {

var memberDataStore = {};

memberDataStore.doRegistration = function (theData) {
var promise = $http({method: 'POST', url: 'memberservices/register', data: theData});

return promise;
}

return memberDataStore;

});

There are a few things to note about Listing 7-6. We register our service using the name

memberDataStoreService, and we make sure that our factory function has access to the $http service. Next,

we create a memberDataStore object. This is to be the return value of our factory function and the object to

which we can attach all of our service methods.

As previously mentioned, we will limit it to just the one here, the doRegistration() method.

The doRegistration() method has just one argument: the data required to perform a registration. This is

the data that is collected from the user via the registration form. Here’s the interesting part: this method

returns the promise object that was created by the call to the $http service. We very much want our service to

take care of the connection to the web server and data transmission, but we very much do not want it poking

its nose into our user-interface concerns. Using a promise, as you will see next, we can manipulate the user

interface from within our controller code instead.
We are now ready to look at a more complete code listing. Listing 7-7 is a reworking of the registration

form we built in the last chapter. This time, it makes use of our memberDataStoreService.

Listing 7-7. Making Use of Our Custom Service

<!DOCTYPE html>
<html ng-app="myapp">
<head lang="en">

<meta charset="UTF-8">
<title>Registration Form</title>
<script src="js/angular.min.js"></script>
<script>

var module = angular.module('myapp', []);

module.factory('memberDataStoreService', function ($http) {

var memberDataStore = {};

memberDataStore.doRegistration = function (theData) {
var promise = $http({method: 'POST', url: 'memberservices/register', data: theData});

return promise;
}

return memberDataStore;

}).controller("MyController", function ($scope, memberDataStoreService) {

$scope.person = {};
$scope.person.newsletterOptIn = true;
$scope.person.channels = [

{ value: "television", label: "Television" },
{ value: "radio", label: "Radio" },
{ value: "social-media", label: "Social Media"},
{ value: "other", label: "Other"}

];

$scope.register = function () {

$scope.firstNameInvalid = false;
$scope.lastNameInvalid = false;
$scope.emailInvalid = false;
$scope.researchInvalid = false;

$scope.showSuccessMessage = false;
$scope.showErrorMessage = false;

if (!$scope.registrationForm.firstName.$valid) {
$scope.firstNameInvalid = true;

}

if (!$scope.registrationForm.lastName.$valid) {
$scope.lastNameInvalid = true;

}

if (!$scope.registrationForm.email.$valid) {
$scope.emailInvalid = true;

}

if (!$scope.registrationForm.research.$valid) {
$scope.researchInvalid = true;

}

// If the registration form is valid, use the
// memberDataStoreService to submit the form data if

($scope.registrationForm.$valid) {

var promise = memberDataStoreService.doRegistration($scope.person);

promise.success(function (data, status) {
$scope.showSuccessMessage = true;

});

promise.error(function (data, status) {
$scope.showErrorMessage = true;

});

$scope.doShow = true;
}

}

})

</script>

<style>
body, input, select {

font: normal 16px/1.4 Georgia;
}

input:not([type='checkbox']), select {
width: 250px;

}

input, select {
padding: 5px;
margin-top: 12px;

}

input[name='email'].ng-dirty.ng-invalid-email {
color: red;

}

input[name='email'].ng-dirty.ng-valid-email {
color: green;

}

form span, .error {
color: red;

}

</style>

</head>
<body>
<div>

<div ng-controller="MyController">

<form name="registrationForm" ng-submit="register()" novalidate>

<div ng-show="showSuccessMessage">
Thank you for taking the time to register!

</div>

<div class="error" ng-show="showErrorMessage">
There appears to have been a problem with your registration.

</div>

<input type="text" placeholder="First Name" name="firstName" ng-

model="person.firstName" required/>
Please enter

a value for First name

<input type="text" placeholder="Last Name" name="lastName" ng-

model="person.lastName" required/>
Please enter a

value for Last name

<input type="email" placeholder="Email" name="email" ng-model="person.email"

required/>
A valid email address is required

<select name="research" ng-model="person.levels"
ng-options="obj.label as obj.value for obj in person.channels" required>

<option value="">Where did you hear about us?</option>
</select>

Please tell us where you heard about us

<input ng-model="person.newsletterOptIn" type="checkbox" name="newsletterOptIn"
id="newsletterOptIn" value="newsletterOptIn"/>

<label for="newsletterOptIn">Recieve monthly newsletter</label>

<input type="submit" value="Register"/>

</form>

</div>
</div>
</body>
</html>

There is a fair bit going on here, much of which was covered in the previous chapter and some of it

earlier in this chapter. However, pay particular attention to the code shown in bold. You will see that we now

ask for the memberDataStore service when we set up our controller. Nearer to the end of the controller

method, you will see the actual call to our new memberDataStoreService service. Following (Listing 7-8) is

that section of code again:

Listing 7-8. Using the memberDataStoreService

// If the registration form is valid, use the
// memberDataStoreService to submit the form data

if ($scope.registrationForm.$valid) {

var promise = memberDataStoreService.doRegistration($scope.person);

promise.success(function (data, status) {
$scope.showSuccessMessage = true;

});

promise.error(function (data, status) {
$scope.showErrorMessage = true;

});

$scope.doShow = true;
}

There is no point submitting invalid data, so we first check to make sure that the user properly

completed all of the required fields. Assuming that the user did, we can now send the data on its way,

using the memberDataStoreService.doRegistration method. Note that the argument to this method is

$scope.person. This contains the validated data captured during the form entry process.
Of course, this isn’t the end of the process, as we still have to await the outcome of our attempt to submit

the data. This attempt will either be successful or it will fail, and we cater to both possibilities, using the

promise object’s success and error methods. Both of these methods refer to some additional HTML elements

that we have placed at the top of the HTML form. Following (Listing 7-9) is that section of code again:

Listing 7-9. Honing In on the Success and Error Messages

<div ng-show="showSuccessMessage">

Thank you for taking the time to register!
</div>

<div class="error" ng-show="showErrorMessage">
There appears to have been a problem with your registration.

</div>

Both of these div elements make use of the ngShow directive. Only one or the other will be displayed

once the promise is resolved. The success method will set the showSuccessMessage to true or the error

method will set the showErrorMessage to true.
What we have done so far is almost enough. However, we should enhance this to provide a slightly better

user experience. Let’s add a visual cue, so that the user is aware that some work is in progress once he/she

clicks the Register button. The first thing we will do is to add a small loading animation next to our registration

form’s Register button.

The other thing we will do is use the ngDisabled directive on the Register button. The ngDisabled

directive is very useful. If the value of its expression is true, it will set the disabled attribute on the element to

which it is applied. Here, we use it to prevent the user from attempting to click the button more than once.
You can see these revisions in Listing 7-10 and Listing 7-11. Take note that the animation in

Listing 7-10, a .gif image file, is inside a span whose visibility is determined by an ngShow directive.

Listing 7-10. Adding a Loading Animation and Disabling the Register Button

<input ng-disabled="working" type="submit"

value="Register"/> <span ng-show="working" style="padding-

left:10px;">

Listing 7-11 shows the changes we have made to the register() function.

Listing 7-11. Indicating That Work Is in Progress

// If the registration form is valid, use the
// memberDataStoreService to submit the form data

if ($scope.registrationForm.$valid) {

$scope.working = true;
var promise = memberDataStoreService.doRegistration($scope.person);

promise.success(function (data, status) {
$scope.showSuccessMessage = true;

});

promise.error(function (data, status) {
$scope.showErrorMessage = true;

});

promise.finally(function () {
$scope.working = false;

});

$scope.doShow = true;
}

The first thing we do is to set $scope.working to true. So, thanks to ngShow, as soon as the user hits the

Register button, the loading animation appears (see Figure 7-3). Of course, when the work is done, we want it

to go away again. In order to achieve that, we simply set $scope.working to false. This also takes care of

enabling and disabling the Register button.

Figure 7-3. Clicking on the Register button

We can’t place this code in the success method, because, if an error occurs, our form will be trapped in its

working state. This would lead to a somewhat conflicted user interface. We could put the code in both the

success and error methods, however. That would work, though a much better way is to use the promise

object’s finally method. This is a cleaner way to handle this kind of task, the kind of task you want performed

regardless of whether or not the promise was rejected or fulfilled.

Handling Returned Data

It is common for asynchronous communications to be a little more involved than simply sending data on its

way. Some scenarios require us to process data with which the web server might respond. A username lookup

service, for example, might require us to inspect a returned value to see if a given username exists within the

system. How would we access this data? What about error handling? How do we find out if and what went

wrong? We look at these considerations next.

Accessing Returned Data

It might be a simple transaction identifier or a large data set containing some or all of a customer’s purchasing

history; it doesn’t really matter. Either way, this information, the server’s response, is represented by the data

argument with which we expect our success method’s callback function to be supplied. Listing 7-12 shows

how we might go about displaying a transaction number to our user.

Listing 7-12. Handling Request Data

promise.success(function (data, status) {

$scope.successMessage = "Your transaction identifier is " + data.transactionID;

$scope.showSuccessMessage = true;

});
This example assumes that we received a JSON response from the server and that this response was

structured something like {"transactionID": "12587965"}. Of course, in your own projects, you will come
across many different structures and even different formats, such as XML.

Handling Errors

It’s an unfortunate fact of life that things do not always go well. Our applications are going to produce errors

for a wide variety of reasons. Some might be network-related and quite possibly outside of our control. Others

might be coding errors or configuration issues—things well within our control. Regardless of the origin of an

error, we should respond appropriately. A good place to do so is in the promise object’s error method (see

Listing 7-13).

Listing 7-13. Handling Errors

promise.error(function (data, status) {

if (status === 0) {
$scope.errorMessage = "network or http level issue"; }

else {

$scope.errorMessage = "response HTTP status is " + status;
}

$scope.showErrorMessage = true;
});

This time, we make use of the status parameter. This will tell us how the server responded, by supplying

us with an HTTP status code. Status codes between 200 and 299 are considered successful, so you won’t see

any in this range inside an error callback. If the server didn’t respond at all, due to some kind of network or

HTTP-level issue, you will get 0 as a result.
Listing 7-13 isn’t a very sophisticated way to handle errors from a user perspective, but it is somewhat

useful for ―at a glance‖ debugging purposes. Ideally, though, you would evaluate your particular scenario

and determine whether or not there is any way to recover from, or more gracefully handle, your own errors
.

CHAPTER 8

Organizing Views

AngularJS excels when it comes to the creation of single-page applications, or SPAs, as they are commonly

called. This kind of application has become increasingly common, given the advances in HTML5 and the

availability of faster Internet connections. With an SPA, we can provide a much more responsive user

experience, decrease the load on our web servers, and benefit from other advantages, such as the ability to

cater better to users who might have to work offline. However, there is a potential issue with a web site or

web application that downloads a lot of its content during a single-page request—organizing and managing

that content.
With Angular, we can manage this situation neatly and easily, using the Angular routing system. As

you will see, this approach makes for a very flexible and powerful solution to the problem of managing

applications that are required to deliver large amounts of content (and functionality) in the context of a

single-page application.
Ideally, we should be able to tell our application where our content resides, and, moreover, when users

request it, it should just find it and load it for them with a minimum of fuss and complexity. This is where the

Angular routing system comes into play.
By the end of this chapter, you should feel comfortable with the most important parts of the Angular

system—the $route service and its related provider and directives. Before we look at any of this, however,

we have to download and install the ngRoute module.

Installing the ngRoute Module

As the Angular routing system is defined within an optional module called ngRoute, we must download this

module before we can get started. To do this, go to http://angularjs.org, click Download, select the version

you require (the code listings in this chapter use the 1.2.5 version), and click the Browse additional modules

link displayed next to Extras, as shown in Figure 8-1.

Figure 8-1. Downloading additional modules
A page listing various Angular modules appears. You want to download the angular-route.js file

(or the minified version, angular-route.min.js, if you prefer) into your angularjs folder.
In Listing 8-1, you can see an example of how I added a script element for the angular-route.js file

within a new HTML file.

Listing 8-1. Adding a Reference to the ngRoute Module

<!DOCTYPE html>
<html ng-app="myApp">
<head>
<title></title>
<script src="angular.js"></script>
<script src="angular-route.js"></script>
</head>
<body>
<!-- body code here -->
</body>
</html>

That’s it—that’s how you install the Angular routing system. Now let’s start looking at what you can do with

it.

Using URL Routes

You’ll learn about routes through a small web site that we will create as we proceed through the chapter.

Though it’s a small web site, it will be more than able to demonstrate the power of the routing system. It will

consist of a home page, an about page, and a contact page. In a traditional static HTML web site, we would

structure this content as three separate HTML files, no doubt using the same navigation elements and other

common features across each of the three pages. In this chapter, however, we are going to learn how to do

something similar, but using the Angular routing system to inject these pages into a single container, or

parent, view page.
Technically speaking, we could come up with a solution that does not require the use of the Angular

routing system or learning anything new at all. For example, we could use ngShow and HTML div elements

to manage the visibility of our content and rely on the use of $scope variables in our controller(s) to switch

various pages on and off or perhaps load them on demand. There are other possibilities too, many of which

revolve around the use of the versatile ngInclude directive. However, due to the added complexity and code

required within controllers, these techniques can become cumbersome and increasingly difficult to manage as

web sites get larger. What we really want is a clean and simple way to separate the task of selecting content

from the controller, so that the application content can be driven from any part of the application. This is

what routes allow us to do.

Defining Routes

At the heart of the routing system is the $route service. This service allows you to create a set of mappings

between URLs and view file names. These mappings, usually known as URL routes or simply routes, work

closely with the value returned by the $location.path() method. When this value changes such that it matches

one of the routes, the corresponding view template (described by the route) will be loaded and displayed.

Listing 8-2 shows a basic route.

Listing 8-2. A Simple Route

$routeProvider.when('/about',

{
templateUrl: 'pages/about.html',
controller: 'aboutController'

});

Don’t worry too much if this code listing doesn’t make total sense. This is just a first glance at what a

route looks like. To begin, let’s consider the purpose of the two arguments passed to the

$routeProvider.when() method. The first is the path that we want the routing system to look for, and the

second is an object that provides details of what it should do if it comes across it. These details, the template

to load and the controller to use, are all that this particular route needs. Translating this code snippet into

plain English, it might read something like this:

When the URL has the path /about, load the view template /pages/about.html, using the
aboutController.

Let’s put some context around this with a more complete example. Listing 8-3 is the parent page of the

small web site that we will be creating. This file, index.hmtl, is the entry point into the web site. The view

templates, home.html, about.html, and contact.html, will be loaded into this page by the routing system as

and when they are required. We will also have another view template, routeNoteFound.html, and this will be

explained shortly.

Listing 8-3. index.html, the Entry Page for Our Demo Web Site

<!DOCTYPE html>
<html ng-app="app">
<head>

<link rel="stylesheet" href="//netdna.bootstrapcdn.com/bootstrap/3.0.0/css/bootstrap.min.css"/>
<link rel="stylesheet" href="//netdna.bootstrapcdn.com/font-awesome/4.0.0/css/font-awesome.css"/>
<script src="angular.min.js"></script>
<script src="angular-route.js"></script>
<script>

var app = angular.module('app', ['ngRoute']);
app.config(function ($routeProvider) {

// configure the routes

$routeProvider

.when('/', {
// route for the home page

templateUrl: 'pages/home.html',
controller: 'homeController'

})
.when(' pages/about', {

// route for the about page

templateUrl: 'pages/about.html',
controller: 'aboutController'

})
.when('pages/contact/', {

// route for the contact page

templateUrl: 'pages/contact.html',
controller: 'contactController'

})
.otherwise({

// when all else fails
templateUrl: 'pages/routeNotFound.html',

controller: 'notFoundController'
});

});

app.controller('homeController', function ($scope) {
$scope.message = 'Welcome to my home page!';

});

app.controller('aboutController', function ($scope) {

$scope.message = 'Find out more about me.';
});

app.controller('contactController', function ($scope) {

$scope.message = 'Contact us!';
});

app.controller('notFoundController', function ($scope) {

$scope.message = 'There seems to be a problem finding the page you wanted';

$scope.attemptedPath = $location.path();
});

</script>
</head>
<body ng-controller="homeController">

<header>
<nav class="navbar navbar-default">

<div class="container">
<div class="navbar-header">

My

Website </div>

<ul class="nav navbar-nav navbar-right">
<i class="fa fa-home"></i> Home
<i class="fa fa-shield"></i> About

<i class="fa fa-comment"></i>

Contact

</div>
</nav>

</header>

<div id="main">
<!-- this is where content will be injected -->
<div ng-view></div>

</div>

</body>
</html>

We will come back to this code listing shortly, but for now, take note that we have made sure to add a
script reference to the ngRoute module, and we have declared our dependency on it with the following line.
Omitting either of these will result in a non-starter.

var app = angular.module('app', ['ngRoute']);

Figure 8-2 shows the result of my efforts on this demo web site. Each part of the web site has essentially

the same look and feel, because the view templates, as you will soon see, ultimately become part of this

single page. Factoring out these aspects of the code, all we really have here is the JavaScript code, which we

will get to shortly, and a header containing some navigation links. What we don’t see is any actual content.

Near the end of the listing, however, we encounter the ngView directive. This directive is an important part

of the routing system, and its job is to include the rendered template of the current route into the main layout

file, which, in this case, is index.html. Every time the current route changes, the included view will change,

based on how we have configured our routes.

Figure 8-2. Demo web site home page

We have declared ngView as an attribute on a div element; consequently, this div element is where our

content is going to be injected. Let’s examine the four view templates that contain this content. These are

shown in Listing 8-4, Listing 8-5, Listing 8-6, and Listing 8-7.

Listing 8-4. The HomePage, home.html

<div class="jumbotron text-center">

<h1>Home Page</h1>

<p>{{ message }}</p>

<div>
</div>

</div>

Listing 8-5. The About Page, about.html

<div class="jumbotron text-center">

<h1>About Page</h1>

<p>{{ message }}</p>

<div>
</div>

</div>

Listing 8-6. The Contact Page, contact.html

<div class="jumbotron text-center">

<h1>Contact Page</h1>

<p>{{ message }}</p>

<div>
</div>

</div>

Listing 8-7. The Route Not Found View Template, routeNotFound.html

<div class="jumbotron text-center">

<h1>This is not good</h1>

<p>{{message}}</p>
<pclass="has-error">{{attemptedPath}}</p>

</div>

Each of these view templates will look the same, differing only in the content displayed once they are

brought into the parent page via the ngView directive. Note the use of the jumbotron and text-center

classes. These are Bootstrap-defined classes that help us with the layout. In the case of the

routeNotFound.html view template, I have also used the Bootstrap has-error class to color the attempted

path red, to highlight the erroneous input.
As I mentioned, every time the current route changes, the included view (the injected content) will

change, based on how we have configured our routes. What would cause the current route to change? In our

example, it would occur anytime our user interacted with the navigation links in our index.html file. So that

we can hone in on these, I have repeated them again in Listing 8-8.

Listing 8-8. The Navigation Links in Our Entry Page, index.html

<ul class="nav navbar-nav navbar-right">

<i class="fa fa-home"></i> Home
<i class="fa fa-shield"></i> About

<i class="fa fa-comment"></i>

Contact

You will notice that these links are declared using a # character, just like those used in HTML when

addressing named anchors. By default, when specifying links for the routing system, you should use this

style of link, because only the portion after the first # character is considered during the matching process.

With this matching process in mind, let’s have a look at some sample URLs and consider how the

$location service can break them down into distinct components (see Table 8-1).

Table 8-1. How the $location Service Works with URLs

http://localhost:63342/index.html#/

$location.path() /

$location.url() /

$location.absUrl() http://localhost:63342/index.html#/

http://localhost:63342/index.html#/about

$location.path() /about

$location.url() /about

$location.absUrl() http://localhost:63342/index.html#/about

http://localhost:63342/index.html#/contact?someParam=someValue

$location.path() /contact

$location.url() /contact?someParam=someValue

$location.absUrl() http://localhost:63342/index.html#/
 http://localhost:63342/index.html#/contact?someParam=someValue

Table 8-1 shows a few of the $location services methods acting on various URLs, though right now, we

are mainly concerned with the path() method. It is this method that the routing system is using to determine

whether or not the routes we configure are a match. Let’s focus our attention back on index.html, or, more

specifically, the route configuration we have in place. Listing 8-9 shows this portion of the file.

Listing 8-9. The index.html Route Configuration

var app = angular.module('app', ['ngRoute']);

app.config(function ($routeProvider) {

// configure the routes

$routeProvider

.when('/', {
// route for the home page

templateUrl:

'pages/home.html',
controller: 'homeController'

})
.when('/pages/about', {

// route for the about page

templateUrl: 'pages/about.html',
controller: 'aboutController'

})
.when('/pages/contact/', {

// route for the contact page

templateUrl: 'pages/contact.html',
controller: 'contactController'

})

.otherwise({
// when all else fails
templateUrl: '/pages/routeNotFound.html',

controller: 'notFoundController'
});

});

It is worth repeating the fact that we declared a dependency on the ngRoute module when we created our

application module, because its absence is the source of many problems for Angular beginners. Next, we use

our application module’s config() method to set up our route configuration. While the config() method can be

used for other configuration purposes, here we use it solely to set up the routing system. We do this using the

$routeProvider parameter that we specified on its anonymous function argument. It is through the

$routeProvider that we tell the routing system how we want it to behave.
The route provider’s when() method adds a new route definition. As we discussed, this is achieved

through the two arguments that we pass to it. In Listing 8-9, the first when() method is used to create a

route for our home page. When the routing system can make a match against the value of location.path()

and '/', it will inject the template 'home.html' into the ngView directive and make homeController its

controller.
The next two route definitions use '/pages/about' and '/pages/contact', and the same logic applies. Of
course, in these cases, the view templates and the controllers used are different. Pay special attention to the

forward slashes in these routes. For example, the following two routes, '/pages/about' and 'pages/about', are

not the same. Note that the latter is missing the forward slash. Without the forward slash, you run the risk of

creating a Not Found error when navigating the web site. Keep in mind that the URL is evaluated relative to

the value returned by the $location.path() method.
Sometimes, a match cannot be made. This is where the otherwise() method comes in. If you were to type

a nonexistent URL into the browser’s address bar, you would cause the otherwise() method to execute and

display the 'routeNotFound.html' view template. Of course, only a single argument is required in this case,

as a URL makes no sense in this context.
We also specified a controller to use with each of our route definitions. Listing 8-10 shows this again.

All but the last one do nothing more than set a value $scope.message, so that we can distinguish one page

from another.

Listing 8-10. The Controllers for Our View Templates

app.controller('homeController', function ($scope) {

$scope.message = 'Welcome to my home page!';
});

app.controller('aboutController', function ($scope) {

$scope.message = 'Find out more about me.';
});

app.controller('contactController', function ($scope) {

$scope.message = 'Contact us!';
});

app.controller('notFoundController', function ($scope) {
$scope.message = 'There seems to be a problem finding the page you wanted';

$scope.attemptedPath = $location.path();

You may have correctly surmised that the last controller complements our otherwise() route definition.

Using
$location.path(), this controller does something slightly more interesting; it sets a value for

$scope.attemptedPath,
so that we can display the invalid URL. This is the URL that could not be matched. Figure 8-3 shows how this

looks.

If you load and view the index.html file at this stage, you will have a fully working, albeit minimal, web

site. Take some time to follow the links back and forth, observing the structure of the URLs and entering

random URLs to see the otherwise() method in action. Once you are ready, we will move on and build up

your knowledge of the routing system further.

Route Parameters

The URLs we have used to define our routes so far have been relatively simple but somewhat inflexible.
This is because the match against $location.path() has had to be exact. This is perfectly fine in many cases,
but not when we want to add parameters to our URLs. Examine the following three route definitions.

$routeProvider.when("/product/123", { templateUrl: "product.html" });
$routeProvider.when("/product/789", { templateUrl: "product.html" });
$routeProvider.when("/product/926", { templateUrl: "product.html" });

All of these use a fictitious product catalog view template, product.html, but each has a slightly different

URL. They each have a different series of numbers representing a product id. If we have 50 more products,

each also represented by its own unique id, are we supposed to create 50 more route definitions? Of course

not. Fortunately, we can deal with this situation, and others like it, using route parameters.

Route parameters are much more flexible than the fixed, or static, routes that we have seen so far. To

demonstrate how they work, we are going to add a very simple contact form to our contact view template and

use a route parameter to help us determine the initial state of its subject field. Here (Listing 8-11) is the

revised contact view template:

Listing 8-11. The Revised Contact View Template

<div class="jumbotron text-center">

<h1>Contact Page</h1>

<form style="width:25%;margin:auto;" role="form">
<div class="form-group">

<input ng-model="subject" type="text" class="form-control" id="subject"

placeholder="Subject"> </div>
<div class="form-group">

<textarea class="form-control" id="message"

placeholder="Message"></textarea> </div>

<button type="submit" class="btn btn-default">Send

Message</button> </form>

</div>
</div>

There’s nothing too fancy going on here; it’s just a basic form with two fields. We aren’t really interested

in submitting this form, so we won’t pay any attention to the usual things (such as field validation and

submitting it to a server). The important thing to take note of is the fact that we have a binding, named

subject, in place on the subject field. The object of this exercise is to pre-populate the subject field, based on

how the user ended up at this view template. This will make more sense when you look at Listing 8-12. This

is the about.html file we saw earlier, but modified to support this feature.

Listing 8-12. The Revised About View Template

<div class="jumbotron text-center">

<h1>About Page</h1>

<p>If you want to learn more about us please let us know.</p>

<p>If you want a free quote give us a call or inquire through our

contact form.</p>
</div>

Again, there is nothing too fancy going on here, just a couple of paragraphs of content containing a

couple of links. Take a close look at these links, though, as they contain our route parameters. Both of these

links have two segments: the first one has the segments contact and learn, and the second one has the

segments contact and quote. In both cases, the second segment acts as the route parameter under the route

definition we examine next (Listing 8-13).

Listing 8-13. Additional Route Definition for the Contact View Template

// route for the contact page with subject param

.when('/contact/:subject', {

templateUrl: 'pages/contact.html',

controller: 'contactController'
});
The second segment in this route acts as a reference to whatever value is actually supplied as the second

segment of a matching URL. Table 8-2 should shed some light on possible values for the subject route
parameter, and it shows a couple of non-starters.

Table 8-2. Possible Values for the subject Route Parameter

URL Match?

/contact/quote Yes. The route parameters value is quote.

/contact/learn Yes. The route parameters value is learn.

/contact/ Too few segments, no match

/contact/learn/more Too many segments, no match

How can we do something useful with this? The first step is to extract the value of the route parameter. What

we will use it for here is a simple comparison that will help us determine the text with which we want to pre-

populate the subject text field. This is shown in Listing 8-14, which is a revision of the contactController

code.

Listing 8-14. The Revised contactController

app.controller('contactController', function ($scope, $routeParams) {

var subject = '';
if ($routeParams ['subject'] == "learn") {

subject = 'I want to learn more about your services';
} else if ($routeParams ['subject'] == "quote") {

subject = 'I would like to get a free quote';
}

$scope.subject = subject;
});

Extracting the value is easy, provided that we make the $routeParams service available to the controller,

as we do here. We then create the variable subject, initializing it to an empty string. The conditional logic

revolves around the value of the route parameter, and here you can see this value being retrieved via its name

(also subject). Indexing into the $routeParams service in this way tells us the value that was actually used in

the URL. As to how it got into the URL, let’s look at the changes I made to the about.html view template (see

Listing 8-15).

Listing 8-15. Creating URLs That Contain Route Parameter Values

<div class="jumbotron text-center">

<h1>About Page</h1>
<p>If you want to learn more about us please let us know.</p>

<p>If you want a free quote give us a call or inquire through our

contact form.</p>

</div>

Here you see the two links that will take us to the contact view template. Both /contact/learn and

/contact/ quote are a match for /contact/:subject. Of course, the route parameter subject is given a different

value for each: learn for the former and quote for the latter. Listing 8-16 shows the new routes configuration.

Listing 8-16. The Revised Routes Configuration

app.config(function ($routeProvider) {

// configure the routes

$routeProvider

// route for the home page
.when('/', {

templateUrl: 'pages/home.html',
controller: 'homeController'

})

// route for the about page
.when('/about', {

templateUrl: 'pages/about.html',
controller: 'aboutController'

})

// route for the contact page
.when('/contact', {

templateUrl: 'pages/contact.html',
controller: 'contactController'

})

// route for the contact page with subject param
.when('/contact/:subject', {

templateUrl: 'pages/contact.html',

controller: 'contactController'
})

// when all else fails
.otherwise({

templateUrl: 'pages/routeNotFound.html',
controller: 'notFoundController'

});
});

You can see that the new route definition is in play now. You can also see that the original route remains

in play too. We still need this, so that we can continue to navigate to the contact view template without a route

parameter. An alternative is to remove it and simply make sure that we always use a route parameter. It all

depends on what you want to achieve. In this case, it made sense to leave it as a general purpose fallback.
Figure 8-4 and Figure 8-5 show the updated about.html and contact.html view templates. Figure 8-5 is the
result of following the link in the second paragraph of the about.html view template. You will see that its
subject field is pre-populated with the text “I would like to get a free quote.‖

Figure 8-4. The updated about.html view template

Figure 8-5. The updated contact.html view template

Eager vs. Conservative Routes

Routes such as '/contact/:subject' are known as conservative routes. That’s really just a way of saying that

the route would match, say, '/contact/howareyou' but would not match 'contact/how/are/you', as the latter

has far too many URL segments. A conservative route is really quite strict about what it considers to be a

match. To explain how an eager route works, let’s start by considering a URL that contains segments that

describe a product, more specifically, a shirt that is available in various sizes, styles, and colors.

/product/123/medium/blue/loosefit
/product/698/large/green/snugfit

Knowing what we already know, this is not a problem for us; we can use a conservative route. Such a

route would look like this:

when('/product/:id/:size/:color/:fit', {
templateUrl: 'pages/product.html',
controller: 'productController'

});

Inside our controller, we can do just as we did earlier and use $routeParams to access each value.
$routeParams['color'] would give us the color, and $routeParams['size'] would give us the size, for example.
However, this is still a conservative route. To match, it needs a URL with all five segments. With an eager

route, you
can do something like this:

when('/product/:id/:data*', {
templateUrl: 'pages/product.html',
controller: 'productController'

});

Note that the use of the asterisk that suffixes the data parameter essentially says ―match any path that has
at least three segments, of which the first segment is product.‖ The second segment will be assigned to the

route parameter id, and the remaining segments will be assigned to the route parameter data.

■ Tip An eager route parameter is denoted by a colon, followed by a name, and then finally an

asterisk. The key difference between an eager route parameter and a conservative route parameter is

that the latter will match one segment, and the former will match as many segments as possible.

Route Configuration Options

We haven’t looked at everything there is to know about the Angular routing system, though we’ve certainly

reviewed enough to get you off to a good start. Before I finish this chapter, I’d like to leave you with a

reference to some additional configuration options, as shown in Table 8-3, if only to give you a sense of

what else is available.

Table 8-3. Route Configuration Options

Name Description

controller Specifies the name of a controller to be associated with the view displayed by the route

controllerAs Specifies an alias to be used for the controller

template Specifies the content of the view. (This can be expressed as a literal HTML string or as a

 function that returns the HTML.)

templateUrl Specifies the URL of the view file to display when the route matches. (This can be

 expressed as a string or as a function that returns a string.)

resolve Specifies a set of dependencies for the controller

redirectTo Specifies a path to which the browser should be redirected when the route is matched.

 (This can be expressed as a string or a function.)

reloadOnSearch When true (the default value), the route will reload only when the values returned by

 the $location search and hash methods change.

caseInsensitiveMatch When true (the default value), routes are matched to URLs without considering case.

One particularly interesting alternative is the template option (see Listing 8-17). It’s similar to the

templateUrl option, but it differs in that it allows you to create the template right there in the route

configuration options (as opposed to using a view template file). It’s certainly not the way to do things in

most cases, but it can be useful when you don’t want or need a dedicated view template.

Listing 8-17. The Template Option

.otherwise({

template: '<h1>Oops</h1>' +
'<p>Sorry, page not found</p>'

});

Using template, Listing 8-17 shows this approach in action. As you can see, we do not specify a path;

instead, we use a string value consisting of some HTML. As I mentioned, you generally would not want to

use this approach unless you had a particular reason to apply it. The main reason I am presenting it here is

to clarify the difference between template and templateURL.
As revealed in Table 8-3, besides accepting a string value, template and templateUrl can both accept a

function as a value. This function must itself return a string. Both of the route definitions that follow are

functionally equivalent.

when('/portfolio', {
templateUrl: function () {return 'contact.html';},
controller: 'contactController'

});

when('/portfolio', {
templateUrl: 'contact.html',
controller: 'contactController'

});
Of course, there’s probably not much point in using the function-based alternative in this example.

It’s easier and much clearer to use the string-based approach. The real strength of the function-based

approach is that it can be dynamic.
The example in Listing 8-18 does it much more justice. Here, we assume that we have ten portfolio

pages, each one featuring a different piece of work. Each piece of work has its own view template, named

portfolio1.html, portfolio2.html, portfolio3.html, all the way through to portfolio10.html.

Listing 8-18. A Dynamic templateUrl Value

when('/portfolio', {

templateUrl: function () {
// create a number between 1 and 10
var num = Math.floor((Math.random() * 10) + 1);
// use this number to produce a path
// to one of the ten view templates return

'pages/portfolio' + num + '.html';
},
controller: 'contactController'

});

The function assigned to templateUrl is now a bit more interesting. This function creates a random

number between 1 and 10, and it appends this number to the end of the file name. Each time the function

runs, a different file name is created. Consequently, a potentially different portfolio view template is

displayed each time.

HTML5 Mode

I made the point earlier in the chapter that, by default, links are declared using a # character. The # character

is only there because we don’t want the browser to fire off an actual HTTP request to the server. For

example, if we removed it, a URL like the one following would create a request to the server.

http://mydomain/index.html/about

However, if we keep the # character as we do in the following URL, the browser will not fire off an

HTTP request to the server, because the # character is telling it that we are seeking content on some part of

the same page—the page that is currently loaded.

http://mydomain/index.html#/about

In reality, this whole approach is really just a workaround for non-HTML5 browsers. It works well, and

it is perhaps the best approach to use if you are unsure who your target audience might be. However, a

cleaner option exists. You can enable HTML mode. In this mode, the # character is not needed. A couple of

reasons to do this might be that you want prettier URLs and much more SEO-friendly URLs.
Enabling HTML5 mode is not terribly difficult, but it does require some web server configuration and a

relatively good understanding of how browsers and web servers handle links. I chose to remain in default

mode, so as not
to muddy the waters in this introductory book, but you should be aware of this option, and I
encourage you to investigate further.

